1. The St Petersburg Paradox. I am running a game. I will let you flip a fair coin until you get heads. If the first head shows up on the k th flip then I will give you r^{k} dollars.
(a) Compute your expected winnings when $r=1$.
(b) Compute your expected winnings when $r=1.5$.
(c) Compute your expected winnings when $r=2$. Does this make any sense? How much would you be willing to pay me to play this game?
[Hint: Use the geometric series.]
2. Let X be a random variable satisfying $E[X]=1$ and $E\left[X^{2}\right]=2$. Use this to compute
(a) $\operatorname{Var}(X)$
(b) $E\left[(X+1)^{2}\right]$
(c) $\operatorname{Var}(2 X+3)$
3. Standardization. Let X be a random variable with $E[X]=\mu_{X}$ and $\operatorname{Var}(X)=\sigma_{X}^{2}$ and consider the random variable

$$
Z=\frac{X-\mu_{X}}{\sigma_{X}}
$$

(a) Use the linearity of expectation to compute $E[Z]$.
(b) Use the general properties of variance to compute $\operatorname{Var}(Z)$.
4. Consider a fair six-sided die with sides labeled $\{1,2,3,4,5,6\}$. Roll the die twice and let

$$
\begin{aligned}
& X=\text { the number you get on the first roll, } \\
& Y=\text { the number you get on the second roll, } \\
& Z=X+Y .
\end{aligned}
$$

Compute the variances $\operatorname{Var}(X), \operatorname{Var}(Y), \operatorname{Var}(Z)$ and the covariances $\operatorname{Cov}(X, Y), \operatorname{Cov}(X, Z)$.
5. Let $X, Y: S \rightarrow \mathbb{R}$ be random variables with the following joint distribution table:

$X \backslash Y$	1	2	3	
1	$1 / 21$	$5 / 21$	$3 / 21$	$9 / 21$
2	$4 / 21$	$2 / 21$	$6 / 21$	$12 / 21$
	$5 / 21$	$7 / 21$	$9 / 21$	

How to read the table: We have $S_{X}=\{1,2\}$ and $S_{Y}=\{1,2,3\}$. The entries in the right column are $P(X=k)$, the entries in the bottom row are $P(Y=\ell)$ and the entries inside the table are $P(X=k, Y=\ell)$.
(a) Use the table to compute $P(X+Y \geq 4)$.
(b) Use the table to compute $E[X]$ and $E[Y]$.
(c) Use the table to compute $E[X Y]$ and $\operatorname{Cov}(X, Y)$.
6. Uncorrelated Does Not Imply Independent. We say that random variables X, Y : $S \rightarrow \mathbb{R}$ are independent if $P(X=k, Y=\ell)=P(X=k) P(Y=\ell)$ for all possible values $k, \ell \in \mathbb{R}$. This property implies that $E[X Y]=E[X] E[Y]$ and hence $\operatorname{Cov}(X, Y)=0$. On the other hand, the identity $\operatorname{Cov}(X, Y)=0$ does not necessarily imply that X and Y are independent. Consider the following example:

$X \backslash Y$	-1	0	1	
-1	0	0	$1 / 4$	$1 / 4$
0	$1 / 2$	0	0	$1 / 2$
1	0	0	$1 / 4$	$1 / 4$
	$1 / 2$	0	$1 / 2$	

(a) Explain why these X and Y are not independent.
(b) Use the table to show that $\operatorname{Cov}(X, Y)=0$.
7. Multinomial Covariance. Suppose that a fair s-sided die is rolled n times, and let X_{i} be the number of times that the i th face shows up.
(a) Compute $\operatorname{Var}\left(X_{i}\right)$ for any i. [Hint: Think of each roll as a coin flip with $H=$ "you get side i " and $T=$ "you don't get side i ". Use the formula for variance of a binomial.]
(b) Compute $\operatorname{Var}\left(X_{i}+X_{j}\right)$ for any $i \neq j$. [Hint: Think of each roll as a coin flip with $H=$ "you get side i or j " and $T=$ "you get some other side".]
(c) Combine (a), (b) to compute $\operatorname{Cov}\left(X_{i}, X_{j}\right)$. Simplify your formula as much as possible.

