1. The St Petersburg Paradox. I am running a game. I will let you flip a fair coin until you get heads. If the first head shows up on the kth flip then I will give you r^k dollars.

- (a) Compute your expected winnings when r = 1.
- (b) Compute your expected winnings when r = 1.5.
- (c) Compute your expected winnings when r = 2. Does this make any sense? How much would you be willing to pay me to play this game?

[Hint: Use the geometric series.]

2. Let X be a random variable satisfying E[X] = 1 and $E[X^2] = 2$. Use this to compute

- (a) $\operatorname{Var}(X)$
- (b) $E[(X+1)^2]$
- (c) Var(2X+3)

3. Standardization. Let X be a random variable with $E[X] = \mu_X$ and $Var(X) = \sigma_X^2$ and consider the random variable

$$Z = \frac{X - \mu_X}{\sigma_X}.$$

- (a) Use the linearity of expectation to compute E[Z].
- (b) Use the general properties of variance to compute Var(Z).
- 4. Consider a fair six-sided die with sides labeled $\{1, 2, 3, 4, 5, 6\}$. Roll the die twice and let

X = the number you get on the first roll, Y = the number you get on the second roll, Z = X + Y.

Compute the variances Var(X), Var(Y), Var(Z) and the covariances Cov(X, Y), Cov(X, Z).

5. Let $X, Y : S \to \mathbb{R}$ be random variables with the following joint distribution table:

$X \setminus Y$	1	2	3	
1	1/21	5/21	3/21	9/21
2	4/21	2/21	6/21	12/21
	5/21	7/21	9/21	

How to read the table: We have $S_X = \{1, 2\}$ and $S_Y = \{1, 2, 3\}$. The entries in the right column are P(X = k), the entries in the bottom row are $P(Y = \ell)$ and the entries inside the table are $P(X = k, Y = \ell)$.

- (a) Use the table to compute $P(X + Y \ge 4)$.
- (b) Use the table to compute E[X] and E[Y].
- (c) Use the table to compute E[XY] and Cov(X, Y).

6. Uncorrelated Does Not Imply Independent. We say that random variables $X, Y : S \to \mathbb{R}$ are independent if $P(X = k, Y = \ell) = P(X = k)P(Y = \ell)$ for all possible values $k, \ell \in \mathbb{R}$. This property implies that E[XY] = E[X]E[Y] and hence Cov(X, Y) = 0. On the other hand, the identity Cov(X, Y) = 0 does not necessarily imply that X and Y are independent. Consider the following example:

$X \setminus Y$	-1	0	1	
-1	0	0	1/4	1/4
0	1/2	0	0	1/2
1	0	0	1/4	1/4
	1/2	0	1/2	

- (a) Explain why these X and Y are **not** independent.
- (b) Use the table to show that Cov(X, Y) = 0.

7. Multinomial Covariance. Suppose that a fair s-sided die is rolled n times, and let X_i be the number of times that the *i*th face shows up.

- (a) Compute $Var(X_i)$ for any *i*. [Hint: Think of each roll as a coin flip with H = "you get side *i*" and T = "you don't get side *i*". Use the formula for variance of a binomial.]
- (b) Compute $\operatorname{Var}(X_i + X_j)$ for any $i \neq j$. [Hint: Think of each roll as a coin flip with H = "you get side *i* or *j*" and T = "you get some other side".]
- (c) Combine (a), (b) to compute $Cov(X_i, X_j)$. Simplify your formula as much as possible.