1. Function of a Random Variable. Let $X: S \rightarrow \mathbb{R}$ be a random variable and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be an ordinary function. Then the composition $g(X)$ [do X first, then do g] is another random variable and we have the following formula:

$$
E[g(X)]=\sum_{k \in S_{X}} g(k) \cdot P(X=k)
$$

Now suppose that X is the number of heads obtained in two flips of a fair coin. Use this formula to compute the following expected values:
(a) $E[X+1]$
(b) $E\left[X^{2}\right]$
(c) $E\left[2^{X}\right]$

First we write down the probability mass function:

k	0	1	2
$P(X=k)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Now we apply the formula for each different function $g(x)$.
(a): If $g(x)=x+1$ then we get

$$
\begin{aligned}
E[X+1] & =E[g(X)] \\
& =\sum_{k} g(k) \cdot P(X=k) \\
& =\sum_{k}(k+1) \cdot P(X=k) \\
& =(0+1) \frac{1}{4}+(1+1) \frac{1}{2}+(2+1) \frac{1}{4}=2
\end{aligned}
$$

Alternatively, since X is binomial with $n=2$ and $p=1 / 2$ we know that $E[X]=n p=1$. Then we can use the linearity of expectation:

$$
E[X+1]=E[X]+E[1]=1+1=2
$$

(b): If $g(x)=x^{2}$ then we get

$$
\begin{aligned}
E\left[X^{2}\right] & =E[g(X)] \\
& =\sum_{k} g(k) \cdot P(X=k) \\
& =\sum_{k} k^{2} \cdot P(X=k) \\
& =0^{2} \frac{1}{4}+1^{2} \frac{1}{2}+2^{2} \frac{1}{4}=\frac{3}{2}
\end{aligned}
$$

(b): If $g(x)=2^{x}$ then we get

$$
E\left[X^{2}\right]=E[g(X)]
$$

$$
\begin{aligned}
& =\sum_{k} g(k) \cdot P(X=k) \\
& =\sum_{k} 2^{k} \cdot P(X=k) \\
& =2^{0} \frac{1}{4}+2^{1} \frac{1}{2}+2^{2} \frac{1}{4}=\frac{9}{4} .
\end{aligned}
$$

2. An urn contains 3 red balls and 4 green balls. Suppose you grab 3 balls without replacement and let R be the number of red balls that you get.
(a) Find a formula for the $\operatorname{pmf} P(R=k)$ and draw the probability histogram.
(b) Compute the expected value $E[R]$.
(a): This is a hypergeometric random variable with $P(R=k)=\binom{3}{k}\binom{4}{3-k} /\binom{7}{3}$. Here is a table:

k	0	1	2	3
$P(R=k)$	$\frac{\binom{3}{0}\binom{4}{3}}{\binom{3}{3}}=\frac{4}{35}$	$\frac{\binom{3}{1}\binom{4}{4}}{\binom{2}{3}}=\frac{18}{35}$	$\frac{\binom{3}{2}\binom{4}{1}}{\binom{7}{3}}=\frac{12}{35}$	$\frac{\binom{3}{3}\binom{4}{0}}{\binom{7}{3}}=\frac{1}{35}$

And here is a histogram:

(b): The expected value is

$$
\begin{aligned}
E[R] & =0 \cdot P(R=0)+1 \cdot P(R=1)+2 \cdot P(R=2)+3 \cdot P(R=3) \\
& =0 \frac{4}{35}+1 \frac{18}{35}+2 \frac{12}{35}+3 \frac{1}{35}=9 / 7 \approx 1.3
\end{aligned}
$$

Remark: This answer makes sense. If $3 / 7$ of the balls in the urn are red and we grab n balls then we expect to get $(3 / 7) n$ red balls. When $n=3$ this gives $(3 / 7) 3=9 / 7$. In general, if an urn contains r red and g balls and if we grab n, then we expect to get $n r /(r+g)$ red balls. We proved this formula in class by expressing R as a sum of n Bernoulli random variables and using the linearity of expectation.
3. A fair four-sided die has sides labeled $\{1,2,3,4\}$. Suppose you roll the die twice and consider the following random variables:

$$
\begin{aligned}
& X=\text { the number that shows up on the first roll, } \\
& Y=\text { the number that shows up on the second roll. }
\end{aligned}
$$

(a) Write down all elements of the sample space. [Hint: $\# S=16$.]
(b) Compute the probability mass function for the sum $P(X+Y=k)$ and draw the probability histogram. [Hint: Count the outcomes corresponding to each value of k.]
(c) Compute the expected value $E[X+Y]$.
(d) Let $Z=\max \{X, Y\}$ be the maximum of the two numbers that show up. Compute the probability mass function $P(Z=k)$ and draw the probability histogram. [Hint: Count the outcomes corresponding to each value of k.]
(e) Compute the expected value $E[Z]$.
(a): If k shows up on the first roll and ℓ on the second roll then we will encode this outcome with the symbol " $k \ell$ ". Here is the sample space:

$$
S=\left\{\begin{array}{llll}
11, & 12, & 13, & 14, \\
21, & 22, & 23, & 24, \\
31, & 32, & 33, & 34, \\
41, & 42, & 43, & 44
\end{array}\right\}
$$

(b): We write down the outcomes corresponding to each possible value of $X+Y$:

$$
\begin{aligned}
& \{X+Y=2\}=\{11\} \\
& \{X+Y=3\}=\{12,21\} \\
& \{X+Y=4\}=\{13,22,31\} \\
& \{X+Y=5\}=\{14,23,32,41\} \\
& \{X+Y=6\}=\{24,33,42\} \\
& \{X+Y=7\}=\{34,43\} \\
& \{X+Y=8\}=\{44\}
\end{aligned}
$$

Since the 16 elements of the sample space are equally likely, we obtain the following table:

k	2	3	4	5	6	7	8
$P(X+Y=k)$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{4}{16}$	$\frac{3}{16}$	$\frac{2}{16}$	$\frac{1}{16}$

And here is a histogram:

(c): There are three ways to compute the expected value of $X+Y$. (1) Symmetry: Since the distribution is symmetric about $X+Y=5$ we must have $E[X+Y]=5$. (2) Linearity: If we already know that $E[X]=E[Y]=2.5$ then we can use linearity to obtain $E[X+Y]=$ $E[X]+E[Y]=2.5+2.5=5$. (3) Directly from the formula:

$$
\begin{aligned}
E[X+Y] & =\sum_{k} k \cdot P(X+Y=k) \\
& =2 \frac{1}{16}+3 \frac{2}{16}+4 \frac{3}{16}+5 \frac{4}{16}+6 \frac{3}{16}+7 \frac{2}{16}+8 \frac{1}{16}=5 .
\end{aligned}
$$

(d): We write down the outcomes corresponding to each possible value of $Z=\max \{X, Y\}$:

$$
\begin{aligned}
& \{Z=1\}=\{11\} \\
& \{Z=2\}=\{12,22,21\} \\
& \{Z=3\}=\{13,23,33,32,31\} \\
& \{Z=4\}=\{14,24,34,44,43,42,41\}
\end{aligned}
$$

Since the 16 elements of the sample space are equally likely, we obtain the following table:

k	1	2	3	4
$P(Z=k)$	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{5}{16}$	$\frac{7}{16}$

And here is a histogram:

(e): The only way to compute $E[Z]$ is directly from the formula:

$$
\begin{aligned}
E[Z] & =\sum_{k} k \cdot P(Z=k) \\
& =1 \frac{1}{16}+2 \frac{3}{16}+3 \frac{5}{16}+4 \frac{7}{16}=\frac{25}{8}=3.125
\end{aligned}
$$

Remark: This is a testable prediction. Do the experiment and see if it works.
4. I am running a lottery. I will sell 100 tickets, each for a price of $\$ 1$. One of the tickets is a winner. The person who buys the winning ticket will receive a cash prize of $\$ 90$.
(a) Suppose you buy one ticket. If the ticket is a winner you will have a profit of $\$ 89$. If it is a loser you will have a profit of $-\$ 1$. What is the expected value of you profit?
(b) If you buy n tickets $(0 \leq n \leq 100)$, what is the expected value of your profit?
(a): Let X be your expected profit from buying one ticket. The two possible values of X are $X=89$ and $X=-1$. Since $X=89$ corresponds to getting the winning ticket we have $P(X=89)=1 / 100$ and since $X=-1$ corresponds to not getting the winning ticket we have $P(X=-1)=99 / 100$. Therefore the expected value is

$$
E[X]=\sum_{k} k P(X=k)=89 P(X=89)+(-1) P(X=-1)=89 \frac{1}{100}+(-1) \frac{99}{100}=-\frac{1}{10} .
$$

In other words, if you buy one ticket then you should expect to lose ten cents.
(b): There are two ways to solve this.

The Good Way. Suppose you buy n tickets and let X_{i} be your expected profit from the i th ticket, so that $X=X_{1}+X_{2}+\cdots+X_{n}$. From part (a) we know that $E\left[X_{i}\right]=-1 / 10$ for all i. Thus from the linearity of expectation we have

$$
\begin{aligned}
E[X] & =E\left[X_{1}+X_{2}+\cdots+X_{n}\right] \\
& =E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right] \\
& =\underbrace{-1 / 10-1 / 10-\cdots-1 / 10}_{n \text { times }}=-n / 10 .
\end{aligned}
$$

In other words, if you buy n tickets (with $0 \leq n \leq 100$) then you expect to lose $n / 10$ dollars. For example, if you buy $n=0$ tickets then you expect to lose 0 dollars, and if you buy $n=100$ tickets then you expect to lose 10 dollars. Indeed, in this case you will pay me $\$ 100$ and I will give you back $\$ 90$ because you definitely won the prize.

The Bad Way. Suppose you buy n tickets and let X be your expected profit. There are only two possible values of X : If none of your tickets is a winner then $X=-n$ because of the cost of the tickets. And if one of your tickets is a winner then $X=90-n$ because you also gain the $\$ 90$. We just need to find the probabilities of these two outcomes. Think of an urn containing 100 tickets, 1 of which is a winner and 99 of which are not winners. If you grab n tickets then the probability of getting the winning ticket (hence $n-1$ losing tickets) is

$$
\begin{aligned}
\frac{\binom{1}{1}\binom{99}{n-1}}{\binom{100}{n}} & =\frac{99!}{(n-1)!(99-n+1)!} \cdot \frac{n!(100-n)!}{100!} \\
& =\frac{n!}{(n-1)!} \cdot \frac{99!}{100!} \cdot \frac{(100-n)!}{(100-n)!}=\frac{n}{100} .
\end{aligned}
$$

Alternatively, let A_{i} be the event that your i th ticket is a winner. Since $P\left(A_{i}\right)=1 / 100$ and since these events are mutually exclusive (two tickets cannot both be winners) we have

$$
P(\text { one of your tickets is a winner })=P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)=\sum_{i=1}^{n} \frac{1}{100}=\frac{n}{100} .
$$

Next, the probability getting zero winning tickets (hence n losing tickets) is

$$
\begin{aligned}
\frac{\binom{1}{0}\binom{99}{n}}{\binom{100}{n}} & =\frac{99!}{n!(99-n)!} \cdot \frac{n!(100-n)!}{100!} \\
& =\frac{n!}{n!} \cdot \frac{99!}{100!} \cdot \frac{(100-n)!}{(100-n-1)!}=\frac{100-n}{100} .
\end{aligned}
$$

Alternatively, since zero and one winning tickets are the only two possibilities, we have

$$
P(\text { zero winning tickets })=1-P(\text { one winning ticket })=1-\frac{n}{100}=\frac{100-n}{100}
$$

Finally, your expected profit is

$$
\begin{aligned}
E[X] & =\sum_{k} k P(X=k) \\
& =(-n) P(X=-n)+(90-n) P(X=90-n) \\
& =-n \cdot \frac{100-n}{100}+(90-n) \cdot \frac{n}{100} \\
& =\frac{-100 n+n^{2}+90 n-n^{2}}{100}=\frac{-10 n}{100}=-\frac{n}{10}
\end{aligned}
$$

Which method do you like better?
Remark: For this problem we did not have a ready made formula. We had to be a bit creative.
5. Let X be a geometric random variable with pmf

$$
P(X=k)=p q^{k-1}
$$

(a) Use a geometric series to find a formula for $P(X>k)$.
(b) Use part (a) to find a formula for the cumulative mass function (cmf) $P(X \leq k)$.
(c) Use part (b) to find a formula for the probability that X is between integers k and ℓ :

$$
P(k \leq X \leq \ell)=?
$$

(a): Let's ignore the case $q=1$. If $q<1$ then we have

$$
\begin{aligned}
P(X>k) & =P(X=k+1)+P(X=k+2)+P(X=k+3)+P(X=k+4)+\cdots \\
& =p q^{k}+p q^{k+1}+p q^{k+2}+p q^{k+3}+\cdots \\
& =p q^{k}\left(1+q^{2}+q^{3}+\cdots\right) \\
& =p q^{k} \frac{1}{1-q}=p q^{k} \frac{1}{p}=q^{k}
\end{aligned}
$$

(b): It follows that

$$
P(X \leq k)=1-P(X>k)=1-q^{k}
$$

(c): And alsq ${ }^{1}$

$$
P(k \leq X \leq \ell)=P(X>k-1)-P(X>\ell)=q^{k-1}-q^{\ell}
$$

6. The Coupon Collector Problem. Each box of a certain brand of cereal contains a coupon, selected at random from n different types of coupons. How many boxes will you need to purchase, on average, until you get all n types?
(a) Assume that you already have m types of coupons and let X_{m} be the number of boxes that you purchase until you get a type that you don't already have. Compute $E\left[X_{m}\right]$. [Hint: Think of each new box as a coin flip with $H=$ "you get a new type of coupon" and $T=$ "you get a coupon that you already have". Then X_{m} is a geometric random variable. What is the probability of H ?]

[^0](b) Let X be the number of boxes that you purchase until you get all n types of coupons. In the notation of part (a) we can write
$$
X=X_{0}+X_{1}+X_{2}+\cdots+X_{n-1} .
$$

Use part (a) and linearity of expected value to compute $E[X]$.
(c) Example: Suppose you continue to roll a fair six-sided die until you see all six sides. On average, how many rolls do you expect to make?
(a): If we already have m types of coupons, then there are $n-m$ more that we still need to get. The chance of getting a new type in the next box is $(n-m) / n$. Until we get a new type, we can think of each new box as a coin flip with $P(H)=(n-m) / n$. Thus the number of boxes X_{m} until we get a new type is a geometric random variable with

$$
E\left[X_{m}\right]=\frac{1}{P(H)}=\frac{1}{(n-m) / n}=\frac{n}{n-m} .
$$

(b): The total number of boxes until we get all n types of coupons can be expressed as

$$
X=X_{0}+X_{1}+X_{2}+\cdots+X_{n-1} .
$$

Hence from part (a) and the linearity of expectation we have

$$
\begin{aligned}
E[X] & =E\left[X_{0}+X_{1}+X_{2}+\cdots+X_{n-1}\right] \\
& =E\left[X_{0}\right]+E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n-1}\right] \\
& =\frac{n}{n-0}+\frac{n}{n-1}+\frac{n}{n-2}+\cdots+\frac{n}{1} .
\end{aligned}
$$

(c): For example, when $n=6$ we have

$$
E[X]=\frac{6}{6}+\frac{6}{5}+\frac{6}{4}+\frac{6}{3}+\frac{6}{2}+\frac{6}{1}=14.7 .
$$

Interpretation: On average, it takes 14.7 rolls to see all the faces of a fair six-sided die.
Remark: That problem is quite tricky, which is why it has a name. I would not have expected you to solve it without a big hint.
7. Expected Value of a Binomial. Let X be a binomial random variable with pmf

$$
P(X=k)=\binom{n}{k} p^{k} q^{n-k}
$$

(a) For $n, k \geq 1$, use the formula $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ to show that $k\binom{n}{k}=n\binom{n-1}{k-1}$.
(b) Use part (a) to compute the expected value of X. I'll get you started:

$$
\begin{array}{rlr}
E[X] & =\sum_{k=0}^{n} k P(X=k) \\
& =\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k} & \\
& =\sum_{k=1}^{n} k\binom{n}{k} p^{k} q^{n-k} & \text { the } k=0 \text { term is zero } \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k} q^{n-k} & \text { from part (a) }
\end{array}
$$

= now what?
[Hint: Apply the binomial theorem to $(p+q)^{n-1}$.]
(a): We have

$$
k\binom{n}{k}=\frac{k}{k!} \frac{n!}{(n-k)!}=\frac{1}{(k-1)!} \frac{n(n-1)!}{(n-k)!}=n \frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!}=n\binom{n-1}{k-1} .
$$

Alternatively, here is a counting proof: From a group of n people we will choose a committee of k people, one of whom will be the president of the committee. There are two ways to do this. On the one hand, we could first choose the committee in $\binom{n}{k}$ ways and then choose the president in k ways from the committee members. On the other hand, we could first choose the president in n ways and then choose the remaining committee members in $\binom{n-1}{k-1}$ ways.
(b): First we use the binomial theorem to observe that

$$
1=(p+q)^{n-1}=\sum_{\ell=0}^{n-1}\binom{n-1}{\ell} p^{\ell} q^{(n-1)-\ell}
$$

Then we can use this fact to complete the calculation:

$$
\begin{array}{rlr}
E[X] & =\sum_{k=0}^{n} k P(X=k) & \\
& =\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k} & \\
& =\sum_{k=1}^{n} k\binom{n}{k} p^{k} q^{n-k} & \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k} q^{n-k} & \text { from part (a) } k=0 \text { term is zero } \\
& =n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1} q^{n-k)} & \\
& =n p \sum_{\ell=0}^{n-1}\binom{n-1}{\ell} p^{\ell} q^{(n-1)-\ell} & \\
& =n p(p+q)^{n-1} & \text { substitute } \ell=k-1 \\
& =n p . &
\end{array}
$$

Remark: This was the bad way to do it. The good way is to express X as a sum of n Bernoulli random variables and use the linearity of expectation.

[^0]: ${ }^{1}$ To sum over the values of X between k and ℓ, inclusive, we can sum over all the values greater than $k-1$ and then get rid of the values that are greater than ℓ.

