Problem 1. Let X be a continuous random variable with the following density function:

$$
f_{X}(x)= \begin{cases}c x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c.

The integral of the density must equal 1 , so that

$$
1=\int_{0}^{1} c x^{2} d x=c\left[\frac{x^{3}}{3}\right]_{0}^{1}=c \cdot \frac{1}{3} .
$$

It follows that $c=3$.
(b) Compute the expected value $E[X]$.

From part (a) and the definition of expected value, we have

$$
E[X]=\int_{0}^{1} x \cdot 3 x^{2} d x=3 \int_{0}^{1} x^{3} d x=3\left[\frac{x^{4}}{4}\right]_{0}^{1}=\frac{3}{4}
$$

(c) Compute the second moment $E\left[X^{2}\right]$ and the variance $\operatorname{Var}(X)$.

Following from part (b), we have

$$
E\left[X^{2}\right]=\int_{0}^{1} x^{2} \cdot 3 x^{2} d x=3 \int_{0}^{1} x^{4} d x=3\left[\frac{x^{5}}{5}\right]_{0}^{1}=\frac{3}{5},
$$

and hence

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=\frac{3}{5}-\left(\frac{3}{4}\right)^{2}=0.375
$$

Problem 2. Let $Z \sim N(0,1)$ be a standard normal random variable. Use the attached tables to solve the following problems.
(a) Find α such that $P(Z<0.5)=\alpha$ and draw a picture to illustrate your answer.

(b) Find a such that $P(Z>a)=15 \%$ and draw a picture to illustrate your answer.

(c) Find b such that $P(|Z|<b)=30 \%$ and draw a picture to illustrate your answer.

Problem 3. Let X_{1}, \ldots, X_{25} be an iid sample from a distribution with mean $\mu=5$ and variance $\sigma^{2}=1$. (The distribution might not be normal.) Consider the sample mean:

$$
\bar{X}=\frac{1}{25}\left(X_{1}+X_{2}+\cdots+X_{25}\right) .
$$

Use the attached tables to solve the following problems.
(a) Compute the expected value of the sample mean, $E[\bar{X}]$.

We use linearity and the fact that $E\left[X_{i}\right]=5$ for each i :

$$
E[\bar{X}]=\frac{1}{25}\left(E\left[X_{1}\right]+\cdots+E\left[X_{25}\right]\right)=\frac{1}{25}(5+\cdots+5)=\frac{1}{25} \cdot 25 \cdot 5=5 .
$$

(b) Compute the variance of the sample mean, $\operatorname{Var}(\bar{X})$.

We use independence and the fact that $\operatorname{Var}\left(X_{i}\right)=1$ for each i :

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\left(\frac{1}{25}\right)^{2}\left(\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{25}\right)\right) \\
& =\left(\frac{1}{25}\right)^{2}(1+\cdots+1)=\left(\frac{1}{25}\right)^{2} \cdot 25=\frac{1}{25}
\end{aligned}
$$

(c) Use the Central Limit Theorem to estimate the probability $P(4.9<\bar{X}<6.1)$.

The Central Limit Theorem tells us that \bar{X} is approximately normal. Since $E[\bar{X}]=$ 5 and $\operatorname{Var}(\bar{X})=1 / 25$, this implies that

$$
\frac{\bar{X}-5}{\sqrt{1 / 25}}=\frac{\bar{X}-5}{1 / 5}=5 \cdot \bar{X}-25 \text { is approximately standard normal. }
$$

We use this to estimate the desired probability. OOPS, I meant to write $P(4.9<$ $\bar{X}<5.1)$ instead of $P(4.9<\bar{X}<6.1)$. Let's do both:

$$
\begin{aligned}
P(4.9<\bar{X}<5.1) & =P(5 \cdot 4.9-25<5 \cdot \bar{X}-25<5 \cdot 5.1-25) \\
& =P(-0.5<5 \cdot \bar{X}-25<0.5) \\
& \approx \Phi(0.5)-\Phi(-0.5) \\
& =\Phi(0.5)-[1-\Phi(0.5)] \\
& =2 \cdot \Phi(0.5)-1 \\
& =2(0.6915)-1 \\
& =38.3 \%
\end{aligned}
$$

$$
\begin{aligned}
P(4.9<\bar{X}<6.1) & =P(5 \cdot 4.9-25<5 \cdot \bar{X}-25<5 \cdot 6.1-25) \\
& =P(-0.5<5 \cdot \bar{X}-25<5.5) \\
& \approx \Phi(5.5)-\Phi(-0.5) \\
& =\Phi(5.5)-[1-\Phi(0.5)] \\
& =1-[1-0.6915] \\
& =69.15 \% .
\end{aligned} \quad \Phi(5.5) \approx 1
$$

Problem 4. Consider a coin with unknown probability of heads, $P(H)=p$. Suppose that you flip the coin $n=200$ times and get heads $Y=120$ times. Use the attached tables to solve the following problems.
(a) Compute a two-sided 95% confidence interval for the unknown constant p.

We will use the estimator $\hat{p}=Y / n=120 / 200=0.6$. The easiest formula for a symmetric, two-sided, approximate $(1-\alpha) 100 \%$ confidence interval is

$$
p=\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} .
$$

When $\alpha=5 \%$ we have $z_{\alpha / 2}=z_{2.5 \%}=1.96$. Hence our confidence interval is

$$
p=0.6 \pm 1.96 \cdot \sqrt{\frac{0.6(1-0.6)}{200}}=0.6 \pm 0.068
$$

In other words, we are 95% confident that the unknown constant p falls in the interval between $0.6-0.068=0.532$ and $0.6+0.068=0.668$.
(b) Test the hypothesis $H_{0}=$ " $p=1 / 2$ " against the alternative $H_{1}=" p \neq 1 / 2$ " at the 1% level of significance.

Again we use $\hat{p}=Y / n=0.6$ as an estimate for p. With the null hypothesis $H_{0}=" p=p_{0}$ " and alternative $H_{1}=" p \neq p_{0}$ ", the typical rejection region for a hypothesis test with significance α has the form

$$
\left|\hat{p}-p_{0}\right|>z_{\alpha / 2} \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}} .
$$

When $\alpha=1 \%$ we have $z_{\alpha / 2}=z_{0.5 \%}=2.575$. Then $p_{0}=0.5$ and $n=200$ give

$$
|\hat{p}-0.5|>2.575 \sqrt{\frac{0.5(1-0.5)}{200}}=0.091
$$

Since $|\hat{p}-0.5|=|0.6-0.5|=0.1$ is greater than 0.091 we reject H_{0} in favor of H_{1}.
Problem 5. Suppose that the following iid sample comes from a normal distribution with unknown mean μ and variance σ^{2} :

4.9	4.0	4.2	4.8

Use the attached tables to solve the following problems.
(a) Compute a two-sided 98% confidence interval for the unknown constant μ.

For a normal sample, the following is a symmetric two-sided ($1-\alpha$) 100% confidence interval for the unknown mean μ :

$$
\mu=\bar{X} \pm t_{\alpha / 2}(n-1) \sqrt{\frac{S^{2}}{n}}
$$

In our case, the sample mean and sample variance are

$$
\bar{X}=\frac{1}{4}(4.9+4.0+4.2+4.8)=\frac{1}{4} \cdot 17.9=4.475
$$

and

$$
\begin{aligned}
S^{2} & =\frac{1}{3}\left[(4.9-4.475)^{2}+(4.0-4.475)^{2}+(4.2-4.475)^{2}+(4.8-4.475)^{2}\right] \\
& =\frac{1}{3}[0.180625+0.225625+0.075625+0.105625] \\
& =\frac{1}{3} \cdot 0.5875 \\
& =0.195833 .
\end{aligned}
$$

When $\alpha=2 \%$ we have $t_{\alpha / 2}(3)=t_{1 \%}(3)=4.541$ and plugging everything in gives

$$
\mu=4.475 \pm 4.541 \sqrt{\frac{0.195833}{4}}=4.475 \pm 1.005
$$

In other words, we are 98% confident that μ is between 3.47 and 5.48.
(b) Test the hypothesis $H_{0}=$ " $\mu=5$ " against the alternative $H_{1}=$ " $\mu<5$ " at the 5% level of significance.

The rejection region for the test of " $\mu=\mu_{0}$ " against " $\mu<\mu_{0}$ " is

$$
\bar{X}<\mu_{0}-t_{\alpha}(n-1) \sqrt{\frac{S^{2}}{n}}
$$

When $\mu_{0}=5$ and $\alpha=5 \%$ this becomes

$$
\bar{X}<5-t_{5 \%}(3) \sqrt{\frac{0.195833}{4}}=5-2.353 \sqrt{\frac{0.195833}{4}}=4.479 .
$$

Since $\bar{X}=4.475$ is less than 4.479 we reject H_{0} in favor of H_{1}. (But it's close!)

