This is a closed book test. No electronic devices are allowed. There are 5 pages and 5 problems, each worth 6 points, for a total of 30 points.

Problem 1. An urn contains 2 red and 4 green balls. Suppose that you reach in and grab 2 balls without replacement, and let X be the number of red balls you get.
(a) Fill in the following pmf table:

k	0	1	2
$P(X=k)$	$\frac{\binom{2}{0}\binom{4}{2}}{\binom{6}{2}}=\frac{6}{15}$	$\frac{\binom{2}{1}\binom{4}{1}}{\binom{6}{2}}=\frac{8}{15}$	$\frac{\binom{2}{2}\binom{4}{0}}{\binom{6}{2}}=\frac{1}{15}$

(b) Use your table to compute the expected value $E[X]$.

$$
E[X]=\sum_{k} k \cdot P(X=k)=0 \cdot \frac{6}{15}+1 \cdot \frac{8}{15}+2 \cdot \frac{1}{15}=\frac{10}{15}=\frac{2}{3}
$$

Alternatively, we can use the formula $E[X]=n r /(r+g)=2 \cdot 2 /(2+4)=4 / 6=2 / 34$.
(c) Draw a histogram, showing the pmf and the expected value of X.

Problem 2. Let $p \geq 0$ and $q \geq 0$ with $p+q=1$. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of independent random variables, each with the same pmf table:

$$
\begin{array}{c|c|c}
k & 0 & 1 \\
\hline P\left(X_{i}=k\right) & q & p
\end{array}
$$

(a) Compute $E\left[X_{i}\right]$ and $\operatorname{Var}\left(X_{i}\right)$.

$$
\begin{aligned}
E\left[X_{i}\right] & =0 \cdot P\left(X_{i}=0\right)+1 \cdot P\left(X_{i}=1\right)=0 q+1 p=p, \\
E\left[X_{i}^{2}\right] & =0^{2} \cdot P\left(X_{i}=0\right)+1^{2} \cdot P\left(X_{i}=1\right)=0 q+1 p=p, \\
\operatorname{Var}\left(X_{i}\right) & =E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2}=p-p^{2}=p(1-p)=p q .
\end{aligned}
$$

Alternatively, we can use the formulas for the expected value and variance of a Bernoulli random variable.
(b) Compute $E\left[X_{1}+X_{2}+\cdots+X_{n}\right]$.

From linearity of expectation we have

$$
\begin{aligned}
E\left[X_{1}+X_{2}+\cdots+X_{n}\right] & =E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right] \\
& =\underbrace{p+p+\cdots+p}_{n \text { times }}=n p .
\end{aligned}
$$

(c) Compute $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$.

Since the X_{i} are independent we have

$$
\begin{aligned}
\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right) & =\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right) \\
& =\underbrace{p q+p q+\cdots+p q}_{n \text { times }}=n p q .
\end{aligned}
$$

Alternatively, we can use the formulas for the expected value and variance of a binomial random variable.

Problem 3. Let X, Y be random variables with the following moments:

$$
E[X]=2, \quad E\left[X^{2}\right]=5, \quad E[Y]=2, \quad E\left[Y^{2}\right]=6, \quad E[X Y]=7 .
$$

(a) Compute $E\left[(X+1)^{2}\right]$.

$$
\begin{aligned}
E\left[(X+1)^{2}\right] & =E\left[X^{2}+2 X+1\right] \\
& =E\left[X^{2}\right]+2 \cdot E[X]+1 \\
& =5+2 \cdot 2+1 \\
& =10
\end{aligned}
$$

(b) Compute $\operatorname{Var}(X), \operatorname{Var}(Y)$ and $\operatorname{Cov}(X, Y)$.

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=5-2^{2}=1, \\
\operatorname{Var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2}=6-2^{2}=2, \\
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] \cdot E[Y]=7-2 \cdot 2=3
\end{aligned}
$$

(c) Compute $\operatorname{Cov}(X+Y, 2 X+3 Y)$.

$$
\begin{aligned}
\operatorname{Cov}(X+Y, 2 X+3 Y) & =2 \operatorname{Cov}(X, X)+3 \operatorname{Cov}(X, Y)+2 \operatorname{Cov}(Y, X)+3 \operatorname{Cov}(Y, Y) \\
& =2 \operatorname{Var}(X)+5 \operatorname{Cov}(X, Y)+3 \operatorname{Var}(Y) \\
& =2 \cdot 1+5 \cdot 3+3 \cdot 2 \\
& =23
\end{aligned}
$$

Problem 4. Let X, Y be discrete random variables with the following joint pmf table:

$X \backslash Y$	1	2
1	$1 / 10$	$2 / 10$
2	$3 / 10$	$4 / 10$

(a) Fill in the following tables:

k	1	2
$P(X=k)$	$\frac{3}{10}$	$\frac{7}{10}$

ℓ	1	2
$P(Y=\ell)$	$\frac{4}{10}$	$\frac{6}{10}$

(b) Compute the expected values $E[X]$ and $E[Y]$.

$$
\begin{aligned}
& E[X]=1 \cdot(3 / 10)+2 \cdot(7 / 10)=17 / 10 \\
& E[Y]=1 \cdot(4 / 10)+2 \cdot(6 / 10)=16 / 10
\end{aligned}
$$

(c) Compute the mixed moment $E[X Y]$ and the covariance $\operatorname{Cov}(X, Y)$.

$$
\begin{aligned}
& E[X Y]=1 \cdot 1 \cdot(1 / 10)+1 \cdot 2 \cdot(2 / 10)+2 \cdot 1 \cdot(3 / 10)+2 \cdot 2 \cdot(4 / 10)=27 / 10 \\
& \operatorname{Cov}(X, Y)=E[X Y]-E[X] \cdot E[Y]=(27 / 10)-(17 / 10) \cdot(16 / 10)=-1 / 50
\end{aligned}
$$

Problem 5. Consider a fair six-sided die with sides labeled $\{1,2,3,4,5,6\}$. Roll the die twice and consider the following random variables:

$$
\begin{aligned}
& X=\text { the number of times you get " } 1 \text { ", } \\
& Y=\text { the number of times you get " } 2 \text { ". }
\end{aligned}
$$

(a) Compute $E[X]$ and $E[Y]$.

Note that X and Y are each binomial with $n=2$ and $p=1 / 6$, so that

$$
E[X]=E[Y]=n p=2(1 / 6)=2 / 6=1 / 3
$$

(b) Compute $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.

Using the formula $\operatorname{Var}(X)=n p q$ for a binomial random variable gives

$$
\operatorname{Var}(X)=\operatorname{Var}(Y)=n p q=2(1 / 6)(5 / 6)=10 / 36
$$

(c) Compute $\operatorname{Var}(X+Y)$ and use the result to find $\operatorname{Cov}(X, Y)$. [Hint: $X+Y$ is a binomial random variable.]

Note that $X+Y$ is the number of times we get " 1 or 2 " in two rolls of a fair die. This is a binomial random variable with $n=2$ and $p=2 / 6$, hence

$$
\operatorname{Var}(X+Y)=n p q=2(2 / 6)(4 / 6)=16 / 36
$$

Then it follows from part (b) that

$$
\begin{aligned}
\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \cdot \operatorname{Cov}(X, Y) & =\operatorname{Var}(X+Y) \\
2 \cdot \operatorname{Cov}(X, Y) & =\operatorname{Var}(X+Y)-\operatorname{Var}(X)-\operatorname{Var}(Y) \\
2 \cdot \operatorname{Cov}(X, Y) & =16 / 36-10 / 36-10 / 36 \\
2 \cdot \operatorname{Cov}(X, Y) & =-4 / 36 \\
\operatorname{Cov}(X, Y) & =-2 / 36
\end{aligned}
$$

Alternatively, we can quote the formula for multinomial covariance:

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}=-2(1 / 6)(1 / 6)=-2 / 36 .
$$

Some students chose not to follow the hint and instead used the joint pmf:

$$
P(X=k, Y=\ell)=\frac{2!}{k!\ell!(2-k-\ell)!}\left(\frac{1}{6}\right)^{k}\left(\frac{1}{6}\right)^{\ell}\left(\frac{4}{6}\right)^{2-k-\ell} .
$$

Then they used the table to compute $E[X Y]$ and hence $\operatorname{Cov}(X, Y)$:

$X \backslash Y$	0	1	2
0	$16 / 36$	$8 / 36$	$1 / 36$
1	$8 / 36$	$2 / 36$	0
2	$1 / 36$	0	0

