
MTH 224: Probability and Statistics Fall 2017
Course Notes 3 Drew Armstrong

Nov 9

We have finished the first two thirds of the course, which in retrospect I would label as

Part I: Introduction to Probability

Part II: Random Variables

I anticipate that the final third of the course will fit under the label

Part III: Introduction to Statistics

I have hinted at statistical ideas from time to time but we didn’t address them fully because we
didn’t have the mathematical tools. We are almost ready to address real statistical problems
but we need one final mathematical tool: the idea of a continuous random variable.

Recall that a discrete random variable X has a probability mass function (pmf) defined by

fXpkq “ P pX “ kq.

We like to draw pictures of pmfs as line graphs or histograms:

In the line graph we obtain the probability of an event by summing the lengths of the
corresponding line segments. In the histogram we obtain the probability of an event by
summing the areas of the corresponding rectangles.

For certain histograms, such as the binomial, we observe that the bars of the histogram start
to resemble the area under a smooth curve. For example, here is the histogram for a binomial
random variable X with n “ 20 and p “ 1{2:
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As shown in the picture, it seems that the bars of this histogram can be approximated by the
area under a certain “bell-shaped” curve. At the moment we don’t know any details about
this curve. Let’s just assume that it’s the graph of a certain real-valued function g : RÑ R.

Now let’s brush off our Calculus skills. If we want the exact probability that X is between 9
and 12 (inclusive) then we need to add the areas of the corresponding rectangles:

P p9 ď X ď 12q “ P pX “ 9q ` P pX “ 10q ` P pX “ 11q ` P pX “ 12q.

But if are happy with an approximate value then we might replace these rectangles by the
area under the smooth curve between 8.5 and 12.5:

P p9 ď X ď 12q «

ż 12.5

8.5
gpkq dk.

The reason we use the endpoints 8.5 and 12.5 instead of 9 and 12 is because the rectangle
centered on k “ 9 has its left endpoint at k “ 8.5 and the rectangle centered on k “ 12 has
its right endpoint at k “ 12.5. We still get an approximation if we integrate from 9 to 12, but
it won’t be as accurate.

We will discuss the details of this bell-shaped curve in the next lecture. For today, let me
prepare the way by introducing the general concept of a continuous random variable.

Continuous random variables behave very much like discrete random variables except for one
crucial difference: a continuous random variable does not have a probability mass
function. In fact, if X : S Ñ R is a continuous random variable then we will find that the
probability of any single value is zero:

P pX “ kq “ 0 for all possible values of k.

Example. Suppose we throw a ball at random onto a billiard table and wait for it to settle.
Then we let X be its distance from a fixed wall. For convenience, let us assume that the
largest possible value of X is 1 unit:
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As before we define the support of X as the set SX Ď R of all possible values that X can take.
In this case the support is the closed interval from 0 to 1:

SX “ r0, 1s “ tk P R : 0 ď k ď 1u.

Now here’s an interesting question.

Question: What is the probability that X is exactly equal to 1{2? Is it zero or nonzero?

P pX “ 1{2q “ 0 or P pX “ 1{2q ‰ 0 ?

The answer to this question depends on the accuracy of our measuring equipment. If we are
measuring X with a ruler then we might have to round to the nearest tick mark. In that case
P pX “ 1{2q will be a nonzero number. However, if we suppose that our measuring equipment
is arbitrarily accurate then I claim that P pX “ 1{2q “ 0.

To examine this claim, let us assume that P pX “ 1{2q takes some fixed non-negative value:

P pX “ 1{2q “ ε ě 0.

There is nothing so special about the point X “ 1{2 so we might as well assume that any
point on the table is equally likely. In particular, we will assume that

P pX “ 1{4q “ ε, P pX “ 1{8q “ ε, P pX “ 1{16q “ ε, etc.

But Kolmogorov’s three rules of probability must still hold even in the continuous case. Since
the points X “ 1{2, X “ 1{4, X “ 1{8 are a subset of the full interval, Kolmogorov’s rules
tell us that

t1{2, 1{4, 1{8, . . .u Ď r0, 1s,

P pX P t1{2, 1{4, 1{8, . . .uq ď P pX P r0, 1sq

P pX “ 1{2q ` P pX “ 1{4q ` P pX “ 1{8q ` ¨ ¨ ¨ ď 1

ε` ε` ε` ¨ ¨ ¨ ď 1.

In other words, if we add the number ε to itself an infinite number of times then we obtain a
number less than or equal to 1. This is clearly impossible unless ε “ 0.

3



Thus, in order to preserve the rules of probability we must have P pX “ kq “ 0 for any specific
value of k. ///

And yet, we also believe that the probabiliy of X falling in a given interval should equal the
length of that interval:

P p0 ď X ď 1q “ 1,

P p0 ď X ď 1{2q “ 1{2,

P p0 ď X ď 1{3q “ 1{3,

P p1{3 ď X ď 2{3q “ 1{3.

So how does this work?

Definition of Probability Density Function. Our fundamental analogy is that

probability « mass.

For discrete random variables we view probabiliy as a finite or infinite sum of point masses:

P pX P Aq “
ÿ

kPA

P pX “ kq.

However, if X is a continuous random variable then this definition does not work because
we must have P pX “ kq “ 0 for any fixed k.1 Instead, we will define a continuous random
variable in terms of its density. To be specific, a continuous random variable X : S Ñ R is
defined by a real-valued function

fX : RÑ R

which represents the density of X on the real line. Accordingly, we call this fX the probability
density function (pdf) of the random variable. To find the probability that X lies in a given
interval ra, bs Ď R we integrate the density over this interval:

P pa ď X ď bq “

ż b

a
fXpxq dx

mass “
ż

density.

In particular, for any fixed value k we find that

P pX “ kq “ P pk ď X ď kq “

ż k

k
fXpxq dx “ 0,

which agrees with our previous discussion. ///

1You have to add up a lot of zeroes to get something that is nonzero!
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In our billiard ball example, we take the density to be constantly equal to 1 inside the interval
r0, 1s and constantly equal to 0 outside this interval:

fXpxq “

#

1 for all 0 ď x ď 1

0 otherwise

In particular, we find that

P p0 ď X ď 1q “

ż 1

0
fXpxq dx “

ż 1

0
1 dx “ x

ˇ

ˇ

1

0
“ 1´ 0 “ 1.

And for any numbers 0 ď k1 ď k2 ď 1 we find that

P pk1 ď X ď k2q “

ż k2

k1

fXpxq dx “

ż 1

0
1 dx “ x

ˇ

ˇ

k2

k1
“ k2 ´ k1.

This agrees with our previous intuition about this random variable.

Definition of Expected Value and Variance. Once we have made the transition from
probability mass functions (pmfs) to probability density functions (pdfs), the rest of the theory
of random variables goes through exactly as before.

If fX : RÑ R is the pdf of a continuous random variable then we define its mean / expected
value by the formula2

µX “ ErXs “

ż

x ¨ fXpxq dx

and more generally we define the r-th moment by the formula

ErXrs “

ż

xr ¨ fXpxq dx.

The expected value still represents the “center of mass” and the function Er´s is still linear.
The variance is defined as before:

VarpXq “ ErpX ´ µXq
2s “

ż

px´ µXq
2 ¨ fXpxq dx.

And it can still be computed with the same trick:

VarpXq “ ErX2s ´ ErXs2.

///

Let’s test out these formulas with an example.

2You should compare this to the formula for probability mass functions: ErXs “
ř

k ¨ P pX “ kq.
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Example (Uniform Random Variables). Consider any real numbers a ă b. We define
the uniform random variable X on the interval ra, bs by the function

fXpxq “

#

1{pb´ aq for a ď x ď b,

0 otherwise.

We observe that this is a probability density function because

ż 8

´8

fXpxq dx “

ż b

a

1

b´ a
dx “

x

b´ a

ˇ

ˇ

ˇ

ˇ

b

a

“
b

b´ a
´

a

b´ a
“
b´ a

b´ a
“ 1.

We don’t even need Calculus to compute this integral because it is just the area of a rectangle:

Since this distribution is symmetric, I expect that the mean is the midway point between a
and b, i.e., that ErXs “ pa` bq{2. Let’s verify this by computing the integral:

ErXs “

ż 8

´8

x ¨ fXpxq dx

“

ż b

a
x ¨

1

b´ a
dx

“
x2

2 ¨ pb´ aq

ˇ

ˇ

ˇ

ˇ

b

a

“
b2 ´ a2

2 ¨ pb´ aq

“
����pb´ aqpb` aq

2 ¨����pb´ aq
“
a` b

2
.

That was a bit trickier but at least we knew what answer to expect. When computing the
variance we don’t know what to expect so we have to just trust the Calculus. First we
compute the second moment:

ErX2s “

ż 8

´8

x2 ¨ fXpxq dx
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“

ż b

a
x2 ¨

1

b´ a
dx

“
x3

3 ¨ pb´ aq

ˇ

ˇ

ˇ

ˇ

b

a

“
b3 ´ a3

3 ¨ pb´ aq

“
����pb´ aqpa2 ` ab` b2q

3 ¨����pb´ aq
“
a2 ` ab` b2

3
.

Here I used a general formula3 for a difference of cubes:

b3 ´ a3 “ pb´ aqpa2 ` ab` b2q.

Finally, we can compute the variance and the standard deviation. We have

σ2
X “ VarpXq “ ErX2s ´ ErXs2

“
a2 ` ab` b2

3
´

ˆ

a` b

2

˙2

“
a2 ` ab` b2

3
´
a2 ` 2ab` b2

4

“
4pa2 ` ab` b2q

12
´

3pa2 ` 2ab` b2q

12

“
a2 ´ 2ab` b2

12
“
pa´ bq2

12
,

and hence

σX “

c

pa´ bq2

12
“
b´ a
?

12
« 0.289 ¨ pb´ aq.

(Here I used the fact that
a

pa´ bq2 “ pb´aq because a ă b.) We conclude that the standard
deviation is approximately 28.9% of the width of the interval.

Question: What is the probability that X is within one standard deviation of its mean?

Answer: P pµX ´ σX ď X ď µX ` σXq « 57.7%.

We could compute this by integrating the constant density 1{pb ´ aq from x “ µX ´ σX to
x “ µX ` σX , but it is easier to think of this integral as the area of a rectangle:

3No, you do not need to memorize this formula. But you should multiply out the right hand side to verify
that it is true.
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Observe that the rectangle has height 1{pb´ aq and width 2σ, so that

(area) “ (base)ˆ (height) “ 2σ ¨
1

b´ a
“

2 ¨����pb´ aq
?

12
¨

1

���b´ a
“

2
?

12
« 57.7%.

Nov 14

Last time I introduced the notion of a continuous random variable, which is defined in terms of
its probability density4 function. Here is a dictionary comparing various concepts for discrete
and continuous random variables:

Discrete X : S Ñ R Continuous X : S Ñ R

probability mass function
ř8
k“´8 fXpkq “ 1

probability density function
ş8

´8
fXpxq dx “ 1

probability of an event A Ď R
P pX P Aq “

ř

kPA fXpkq

probability of an interval ra, bs Ď R
P pa ď X ď bq “

şb
a fXpxq dx

probability of a single value k P R
P pX “ kq “ fXpkq

probability of a single value k P R
P pX “ kq “ P pk ď X ď kq “

şk
k fXpxq dx “ 0

center of mass / expected value
ErXs “

ř8
k“´8 k ¨ fXpkq

center of mass / expected value

ErXs “
ş8

´8
x ¨ fXpxq dx

Except for these differences the discrete and continuous theories are completely parallel. The
two theories can be compared directly if we think of a discrete random variable in terms of its
histogram. For example, suppose that X,Y are random variables where X is discrete and

4As opposed to a probability mass function.
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Y is continuous. Suppose further that we have fXpkq « fY pkq for all whole numbers k P R.
Then the graph of fY is a close fit to the histogram of X, as in the following picture:

In this picture we also see that the probability of X P t4, 5, 6u, i.e., the area of these three
rectangles, is approximately equal to the area under the graph of fY from 3.5 to 6.5:

P p4 ď X ď 6q « P p3.5 ď Y ď 6.5q

6
ÿ

k“4

fXpkq «

ż 6.5

3.5
fY pxq dx

Notice that we integrated from 3.5 “ 4 ´ 0.5 to 6.5 “ 6 ` 0.5 instead of from 4 to 6 so that
our region more closely matches the bars of the histogram. This trick is called the “continuity
correction.” It is not strictly necessary but it leads to better approximations.

Today we will discuss the first and most important example of this kind of discrete-continuous
approximation, which was first discovered by Abraham de Moivre in the 1730s.

De Moivre’s Problem. Suppose that a fair coin is flipped 3600 times and let X be the
number of heads. What is the probability that X is between 1770 and 1830? ///

Since X is a binomial random variable with n “ 3600 and p “ 1{2 we can easily write down
an exact formula for the probability:

P p1770 ď X ď 1830q “
1830
ÿ

k“1770

P pX “ kq

“

1830
ÿ

k“1770

ˆ

3600

k

˙ˆ

1

2

˙k ˆ

1´
1

2

˙3600´k
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“

1830
ÿ

k“1770

ˆ

3600

k

˙

{ 23600.

However, the numerators and denominators here are so gigantic that it is impossible to
simplify this expression without a computer. In particular, the denominator has almost 2500
decimal digits:

log10

`

23600
˘

« 2495.

De Moivre did not have access to a computer in 1730, but he did have a mastery of the
relatively new techniques of Calculus.5 By applying these techniques and some clever tricks
he was able to evaluate the sum by hand to an accuracy of four decimal places:6

P p1770 ď X ď 1830q “
1830
ÿ

k“1770

ˆ

3600

k

˙

{ 23600 « 69.07%.

That’s pretty amazing! How did he do it?

First he made the change of variables ` “ k ´ 1800 so the sum is symmetric about zero:

1830
ÿ

k“1770

ˆ

3600

k

˙

{ 23600 “

30
ÿ

`“´30

ˆ

3600

1800` `

˙

{ 23600.

It is not a coincidence that 1800 is the expected value of X and 30 is the standard deviation.7

In fact, de Moivre invented the concept of “standard deviation” through his study of this
problem. The main problem here is that the binomial coefficient

`

3600
1800``

˘

is only defined for
whole numbers `. To apply the techniques of Calculus, de Moivre needed to approximate this
“discrete” expression with a “continuous” expression that is defined for all ` P R.

I’ll show you his solution in the more general case when a fair coin is flipped 2n times, with
mean µ “ n and standard deviation σ “

a

n{2. Afterwards we’ll return to the specfic example
where 2n “ 3600, µ “ 1800 and σ “

?
900 “ 30.

Step 1. When the ratio `{n is small, de Moivre used some Calculus tricks to show that

ˆ

2n

n` `

˙

{

ˆ

2n

n

˙

« e´`
2{n.

Hence probability of getting n` ` heads has the following approximation:

P pX “ n` `q “

ˆ

2n

n` `

˙

{ 22n « e´`
2{n

„ˆ

2n

n

˙

{ 22n



“ e´`
2{n ¨ P pX “ nq.

Observe that the expression on the right makes sense for any real number ` P R. ///

5Which was invented by Newton and Leibniz in the 1650s.
6He actually made a small mistake, but he could have evaluated it to four decimal places.
7Remember that ErXs “ np and VarpXq “ npp1´ pq for a binomial.
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Step 2. When n is large, de Moivre could also show that

P pX “ nq “

ˆ

2n

n

˙

{ 22n «
1
?
cn
,

where c P R is some specific constant. At first he used an approximation of this constant but
then his friend James Stirling stepped in to show that the constant is exactly equal to π!8 In
other words, Stirling showed that

P pX “ nq “

ˆ

2n

n

˙

{ 22n «
1
?
πn

.

///

By putting these two steps together we obtain the approximation

P pX “ n` `q «
1
?
πn

e´`
2{n,

which is valid when n is large and `{n is small. The great advantage of this expression is that
it is defined not just for whole numbers but for all real numbers ` and n. Going back to the
case 2n “ 3600, we obtain the approximation

P pX “ 1800` `q «
1

?
1800π

e´`
2{1800,

which is valid when the ratio `{1800 is small.9 In particular, since 30{1800 is rather small,
de Moivre obtained a rather good estimate for P p1700 ď X ď 1830q by integrating the
function between ´30 and 30. We can obtain an even better estimate by using the “continuity
correction,” i.e., by integrating from ´30.5 to 30.5:

P p1770 ď X ď 1830q “
30
ÿ

`“´30

ˆ

3600

1800` `

˙

{ 23600 «

ż 30.5

´30.5

1
?

1800π
e´x

2{1800 dx « 69.07%.

The integral on the right may not look any easier than the sum on the left. However, de Moivre
knew how to expand the function e´x

2{1800 as a power series in x and then he integrated this
series term by term to get a convergent sum. It turns out that this sum converges so rapidly
that only a few terms are needed to get a good approximation.

Many years later (around 1810) Pierre-Simon Laplace brough de Moivre’s work to maturity
by extending to the case of a general binomial.

The de Moivre-Laplace Theorem. Let X be a binomial random variable with parameters
n and p. If the ratio k{np is close to 1, and if the numbers np and np1 ´ pq are both large,
then we have the following approximation:

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´1 «
1

a

2πnpp1´ pq
e´pk´npq

2{2npp1´pq.

8No one was expecting that.
9How small? Never mind. We won’t be concerned with fine details like that.

11



To simplify this expression a bit we should observe that µ “ np and σ2 “ npp1 ´ pq are just
the mean and variance of the binomial X. Thus we can also write

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´1 «
1

?
2πσ2

e´pk´µq
2{2σ2

.

///

I’m sorry that the difficulty of the math went up significantly in this lecture. The details of
de Moivre’s and Stirling’s approximations are not so imporant for us, but the strange formula

1
?

2πσ2
e´pk´µq

2{2σ2

that appears in the de Moivre-Laplace theorem will be very important.10 This is the most
important formula in statistics and it will be our main concern for the rest of the course. It
is a bit messy but we’re willing to put up with the mess because it is so useful.

Nov 16 and Thanksgiving Break

Last time I tried to motivate the following definition.

Definition of Normal Distribution. Let X be a continuous random variable. We say that
X has a normal distribution with parameters µ and σ2 if its pdf is given by the formula

npx;µ, σ2q “
1

?
2πσ2

e´px´µq
2{2σ2

.

You might also see this written in the equivalent form

npx;µ, σ2q “
1

σ
?

2π
e´

1
2p

x´µ
σ q

2

.

We will use the shorthand
X „ Npµ, σ2q

to indicate that the random variable X has pdf given by fXpxq “ npx;µ, σ2q. ///

The expression npx;µ, σ2q is meant to indicate that x is a variable and µ, σ2 are constants.
By treating this as a function of x we can see that

npx;µ, σ2q Ñ 0 as xÑ ˘8.

By computing the first two derivatives11 one can also show that the graph of npx;µ, σ2q

10You should memorize it.
11I’ll let you do this on HW5.
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• has a global maximum at x “ µ, and

• has inflection points at x “ µ˘ σ.

The heights of the maximum and the inflection points are

npµ;µ, σ2q “ 1{
?

2πσ2 and npµ˘ σ;µ, σ2q “ e´1{2{
?

2πσ2,

which implies that the inflection points are always about 60% as high at the maximum:

npµ˘ σ;µ, σ2q

npµ;µ, σ2q
“ e´1{2 « 60.65%.

In summary, the graph of npx;µ, σ2q looks like a “bell curve.”

By calling this the “normal distribution” we have implicitly assumed that the total area under
the curve is 1, i.e., that for any parameters µ and σ2 we have

ż 8

´8

1
?

2πσ2
e´px´µq

2{2σ2
dx “

ż 8

´8

npx;µ, σ2q dx “ 1.

But why is this true? If it’s true for any values of µ and σ2 then it must be true for the special
values µ “ 0 and σ2 “ 1. In this case the desired formula is

ż 8

´8

1
?

2π
e´x

2{2 dx “ 1
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ż 8

´8

e´x
2{2 dx “

?
2π,

which we can clean up a bit by substituting u2 “ x2{2 (and hence dx “
?

2 du) to get

ż 8

´8

e´u
2
du “

?
π.

Proving this boxed formula was the hardest piece of the de Moivre-Laplace theorem, the piece
that was contributed by de Moivre’s friend James Stirling. For this reason I’ll call it Stirling’s
formula. It cannot be proved12 with methods from Calc I and II, so we’ll just take it as a
basic fact of nature.

And what is the meaning of the parameters µ and σ2? By using these particular symbols we
are strongly implying that these parameters are the mean and variance of the distribution.
Indeed, by using Stirling’s formula and some integration by parts, one could show that

ErXs “

ż 8

´8

x ¨ npx;µ, σ2q dx “ µ

and

VarpXq “

ż 8

´8

px´ µq2 ¨ npx;µ, σ2q dx “ σ2.

But the computation is not very fun, and this isn’t a Calculus class, so we won’t bother.

In summary, we have an infinite family of normal distributions, one for each choice of mean µ
and variance σ2. The definition and the basic properties of this distributions are a bit tricky,
so why do we bother with them? There are two reasons.

Reason 1. Normal distributions are everywhere.13

The de Moivre-Laplace theorem tells us that flipping many coins (or flipping one coin many
times) gives an approximately normal distribution for the number of heads. To be specific,
suppose that X1, X2, . . . , Xn is a sequence of independent Bernoulli random variables, each
with expected value ErXis “ p. Then the sum X “ X1`X2` ¨ ¨ ¨ `Xn is a binomial random
variable with pmf

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k,

and we have seen many times14 that ErXs “ np and VarpXq “ npp1´ pq.

12The easiest proof uses a trick from multivariable Calculus. You can find it on Google if you’re curious.
13That’s why we call them normal.
14For example on Problem 1 of Exam 2.
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For small values of n we can compute binomial probabilities by hand. However, for large
values of n we need some method of approximation. If np and np1´ pq are both large enough
(the rule of thumb is np ě 10 and np1´ pq ě 10) then the de Moivre-Laplace theorem tells us
that

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k « npk;np, npp1´ pqq,

and this approximation is particularly good for values of k near the mean np. In other
words, the binomial random variable X is approximately normal with parameters µ “ np and
σ2 “ npp1 ´ pq. It follows that for any whole numbers k1 and k2 the probability of getting
between k1 and k2 heads (inclusive) is approximated by an area under a normal curve:

P pk1 ď X ď k2q “

k2
ÿ

k“k1

P pX “ kq «

ż k2`
1
2

k1´
1
2

npx;np, npp1´ pqq dx.

We will compute some examples below. For now, here is a picture:

But that’s not all. Laplace took this analysis even farther and showed that any sum of identical
random variables is approximately normal. His “central limit theorem” is often referred to as
the fundamental theorem of statistics.

The Central Limit Theorem. Let X be any random variable whatsoever with mean
ErXs “ µ and variance VarpXq “ σ2. We can think of X as the result of some scientific
measurement. If we perform the same measurement many times then we obtain a sequence of
random variables, which we call a sample:

X1 “ result of the 1st measurement,

X2 “ result of the 2nd measurement,

...

Xn “ result of the nth measurement.
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We will assume that the random variables Xi are identically distributed, i.e., the underlying
distribution X does not change between measurements, and we will assume that the mea-
surements are independent, i.e., the thing being measured is not altered by our measuring
procedure. We define the sample mean as the average of the n measurements:

X “
X1 `X2 ` ¨ ¨ ¨ `Xn

n
.

By linearity, the expected value of the sample mean is the same as the mean of the underlying
distribution:

ErXs “
ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns

n
“
µ` µ` ¨ ¨ ¨ ` µ

n
“
nµ

n
“ µ.

This suggests that we can use the sample mean X (which we know) as an estimate for the
underlying population mean µ (which we don’t know). But how accurate is this estimate? Our
intuition suggests that taking more observations will lead to more accuracy. Quantitatively,
we can use the independence of the observations to show that

VarpXq “ Varp
1

n
X1 `

1

n
X2 ` ¨ ¨ ¨ `

1

n
Xnq

“
1

n2
VarpX1q `

1

n2
VarpX2q ` ¨ ¨ ¨ `

1

n2
VarpXnq

“
1

n2
σ2 `

1

n2
σ2 ` ¨ ¨ ¨ `

1

n2
σ2

“
nσ2

n2

“
σ2

n
.

As the number n of observations grows, the variance of the average VarpXq “ σ2{n goes to
zero, which means that X is very likely to be close to µ. This phenomenon was first observed
by Jacob Bernoulli, who called it the law of large numbers.15

In summary: If X is the result of some fixed experiment, then the average of n independent
observations of this experiment has mean and variance given by

ErXs “ ErXs and VarpXq “ VarpXq{n.

This tells us that the known X is a good estimate for the unknown µ. But suppose we want to
go further and estimate the probability that the unknown number µ lies within a certain fixed
range. In that case we need to know the actual distribution of X, and this is what Laplace’s
Central Limit Theorem tells us.

15The law of large numbers is the philosophical justification for the use of the expected value in statistics.
That is, if you observe the random variable X many times, then on average you expect to get the expected
value ErXs. That’s reassuring.
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Let X be any random variable and let X be the average of n independent observa-
tions of X. If n is large, then the distribution of the sample mean is approximately
normal with mean ErXs and variance VarpXq{n:

X « N pErXs,VarpXq{nq .

Equivalently, the sum of the n observations, i.e., n ¨X, is approximately normal
with mean n ¨ ErXs and variance n ¨VarpXq:

n ¨X « N pnErXs, nVarpXqq .

In the special case that X is a Bernoulli random variable with ErXs “ p and VarpXq “ pp1´pq
then the sum of n observations is binomial with parameters n and p, so we recover the de
Moivre-Laplace theorem:

binomial n ¨X « N pnErXs, nVarpXqq “ Npnp, npp1´ pqq.

To illustrate the general idea, here is the pdf for some random variable X that I drew by hand.
The underlying mean and standard deviation are µ “ 195.5 and σ “ 101.42:

Here is the pdf for the average of 2 random samples from X:

Here is the pdf for the average of 9 random samples from X:

17



And here is the pdf for the average of 100 random samples from X:

We observe that the average of 100 random samples has a distribution that approximately
normal with mean µ “ 195.5 and variance σ2{100, i.e., standard deviation σ{10 “ 10.14.16

Reason 2. Normal distributions have good “stability” properties.

We have seen that normal distributions occur whenever we take the average or the sum of
many independent observations. That is the main reason why we care about normal random
variables.

The other reason that normal distributions are so popular is because they have nice “stability”
properties that allow us to work with them. This was especially important in the days before
electronic computers.

Stability Properties of Normal Distributions. Let X,Y be normal random variables

X „ NpµX , σ
2
Xq and Y „ NpµY , σ

2
Y q

and let α, β P R be any constants. In this case the random variables αX ` β and αX ` βY
are also normal. That is, we have

αX ` β „ NpαµX ` β, α
2σ2
Xq,

αX ` βY „ NpαµX ` βµY , α
2σ2
X ` β

2σ2
Y q.

You will prove the first of these properties on HW5. ///

The main application of these properties is that we can reduce any computation with normal
distributions into a certain “standard” form.

Standardization of a Normal Distribution. Let X „ Npµ, σ2q be any normal random
variable. Then we define its standardization by

Z “
X ´ µ

σ
.

16The numbers mx̄ and sx̄ in the pictures are not the theoretical mean and standard deviation of X. Instead,
they are approximations that are generated by some random process. That’s why they don’t exactly match our
predictions. I generated the pictures at this webpage: http://www.ltcconline.net/greenl/java/Statistics/
clt/cltsimulation.html
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By the first stability property we know that Z “ 1
σX ´

µ
σ is normal. Furthermore, we can

easily compute that

ErZs “ E

„

1

σ
X ´

µ

σ



“
1

σ
ErXs ´

µ

σ
“

1

σ
µ´

µ

σ
“ 0

and

ErZ2s “ E

„

pX ´ µq2

σ2



“
1

σ2
E
“

pX ´ µq2
‰

“
1

σ2
σ2 “ 1.

Hence we have ErZs “ 0 and VarpZq “ ErZ2s ´ErZs2 “ 1´ 02 “ 1. In this case we say that
Z has a standard normal distribution: Z „ Np0, 1q.17

In summary, we see that

X „ Npµ, σ2q ðñ Z “
X ´ µ

σ
„ Np0, 1q.

///

Here’s how we will apply this idea. Suppose that X „ Npµ, σ2q is any normally distributed
random variable with mean µ and variance σ2, so that Z “ pX ´ µq{σ has a standard normal
distribution. Then for any real numbers a ď b we have

ż b

a
npx;µ, σ2q dx “ P pa ď X ď bq

“ P pa´ µ ď X ´ µ ď b´ µq

“ P

ˆ

a´ µ

σ
ď
X ´ µ

σ
ď
b´ µ

σ

˙

“ P

ˆ

a´ µ

σ
ď Z ď

b´ µ

σ

˙

“

ż pb´µq{σ

pa´µq{σ
npx; 0, 1q dx.

We have reduced the problem of computing areas under a normal curve to the problem of
computing areas under a standard normal curve. This is helpful because now instead of
infinitely many different normal curves we only have to understand one of them. Unfortunately,
this is still a hard problem.

The Bad News. To compute the area under a standard normal curve, we need to find an
antiderivative for the density function

npx; 0, 1q “
1
?

2π
e´x

2{2.

This antiderivative certainly exists. However, the bad news is that it does not have a formula
that can be expressed in terms of any functions that we know (trigonometric, exponential,

17The letter “z” is always used for the standard normal distribution. I have no idea why.
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logarithmic, etc.). Thus our only choice is to give the antiderivative a new name. We will
follow the textbook and call it Φpzq. By the Fundamental Theorem of Calculus we can define
the antiderivative as the area under the curve from ´8 to any real number z P R:

Φpzq “

ż z

´8

npx; 0, 1q “

ż z

´8

1
?

2π
e´x

2{2 dx.

If Z „ Np0, 1q is any standard normal random variable then we also observe that Φpzq “
P pZ ď zq. This tells us that Φpzq Ñ 0 as z Ñ ´8 and Φpzq Ñ 1 as z Ñ 8. In probability
and statistics books you will often see Φpzq referred to as the cumulative density function (cdf)
of the variable Z.

Here is a picture of the pdf npx; 0, 1q and the cdf Φpzq of a standard normal, drawn to scale:

As you see, the pdf of a standard normal distribution is rather flat. For this reason we usually
won’t draw it to scale. ///

Fortunately, the difficult problem of computing Φpzq has been thoroughly studied and we can
look up the answers in the back of any statistics textbook.

The Good News. By using the Fundamental Theorem of Calculus we can express any area
under the standard normal curve npx; 0, 1q in terms of its antiderivative Φpzq. Let Z be a
standard normal random variable. Then for any real numbers z1 ď z2 we have

P pz1 ď Z ď z2q “

ż z2

z1

npx; 0, 1q dx “ Φpz2q ´ Φpz1q.

Here is a picture (not drawn to scale):
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Furthermore, since the standard normal distribution is symmetric about zero we only need to
know the values of Φpzq when z is positive. Indeed, for any positive z P R we observe that

Φp´zq “ P pZ ď ´zq “ P pZ ě zq “ 1´ Φpzq.

Here is a picture (again, not to scale):

The good news is that a table of values for Φpzq with z ě 0 can be found in the back of any
statistics textbook. In our textbook it’s on page 494. ///

That was a lot of theory for one lecture so let me end with a couple of examples. After
Thanksgiving we’ll spend more time on applications.

Continuous Example. Suppose that X is normally distributed with mean µ “ 6 and
variance σ2 “ 25, hence standard deviation σ “ 5. Compute the probability that X is within
one standard deviation of its mean:

P p|X ´ 6| ă 5q “ ?

Solution: Let Z “ pX ´ µq{σ “ pX ´ 6q{5 be the standardization, which has a standard
normal distribution. Then we have

P p|X ´ 6| ă 5q “ P p´5 ă X ´ 6 ă 5q
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“ P

ˆ

´5

5
ă
X ´ 6

5
ă

5

5

˙

“ P p´1 ă Z ă 1q

“ Φp1q ´ Φp´1q

“ Φp1q ´ r1´ Φp1qs

“ 2 ¨ Φp1q ´ 1

« 2p0.8413q ´ 1

“ 0.6826 “ 68.26%.

More generally, for any normal random variable X „ Npµ, σ2q we find that

P p|X ´ µ| ă σq “ P

ˆ

´1 ă
X ´ µ

σ
ă 1

˙

“ Φp1q ´ Φp´1q “ 2 ¨ Φp1q ´ 1 « 68.26%.

and also that

P p|X ´ µ| ă 2σq “ 2 ¨ Φp2q ´ 1 « 95.44%,

P p|X ´ µ| ă 3σq “ 2 ¨ Φp3q ´ 1 « 99.74%.

It is useful to remember this 68–95–99.7 rule because normal distributions are so common.

Binomial Approximation Example. Suppose we flip a fair coin 3600 times and let X be
the number of heads that we get. Compute the probability that we get between 1790 and
1815 heads (inclusive):

P p1790 ď X ď 1815q “ ?

Solution: Since X is a binomial random variable with n “ 3600 and p “ 1{2 we know that

µ “ np “ 1800 and σ “
a

npp1´ pq “ 30.

By the de Moivre-Laplace Theorem (which is a special case of the Central Limit Theorem)
we know that X is approximately normal with the same mean and standard deviation, and
hence that pX´1800q{30 is approximately a standard normal random variable. Thus we have

P p1790 ď X ď 1815q “ P p´10 ď X ´ 1800 ď 15q

“ P

ˆ

´10

30
ď
X ´ 1800

30
ď

15

30

˙

“ P

ˆ

´1

3
ď
X ´ 1800

30
ď

1

2

˙

« Φp1{2q ´ Φp´1{3q

“ Φp1{2q ´ r1´ Φp1{3qs

« p0.6915q ´ r1´ p0.6293qs “ 0.3208 “ 32.08%.
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We get an even better approximation if we remember to apply the “continuity correction.”
Let X 1 „ Np1800, 302q be a (continuous) normal variable with the same mean and standard
deviation as the discrete variable X. Then we have

P p1790 ď X ď 1815q « P p1789.5 ď X 1 ď 1815.5q

“ P p´10.5 ď X 1 ´ 1800 ď 15.5q

“ P

ˆ

´10.5

30
ď
X 1 ´ 1800

30
ď

15.5

30

˙

« P

ˆ

´0.35 ď
X 1 ´ 1800

30
ď 0.52

˙

“ Φp0.52q ´ Φp´0.35q

“ Φp0.52q ´ r1´ Φp0.35qs

« p0.6985q ´ r1´ p0.6368qs “ 0.3353 “ 33.53%.

For comparison, my laptop is powerful enough to compute the exact answer:

P p1790 ď X ď 1815q « 33.41%.

This shows that the “continuity correction” gives a better result.

Nov 28

We are ready to consider our first official statistics problem.

Statistics Problem Part I. We have a coin18 with P pHq “ p where the value of p is unknown
to us. We want to perform an experiment to estimate the value of p. ///

It is pretty clear what our experiment should be. We will flip the coin n times and let X be
the number of heads that we get. Then we expect that the sample mean X “ X{n will be
close to the true value of p. In this case we will write

p̂ “ X

and say that we are using the random variable X as an estimator for the unknown parameter
p. Since X is a binomial random variable with parameters n, p we recall that ErXs “ np.
Hence

Erp̂s “ ErXs “ E

„

1

n
¨X



“
1

n
¨ ErXs “

1

n
¨ np “ p.

In this case we say that X is an unbiased estimator for p. That is, if we perform this experiment
many times then on average we will obtain the correct answer.

18Not necessarily a literal coin.
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Real World Example. Consider a population of voters and suppose that p is the proportion
of these voters who plan to vote for a certain “thing.”19 For simplicity we will model each
voter as an identical coin flip where “heads” means “yes,” so that P pHq “ p. In order to
estimate the true value of p we polled n “ 400 voters and found that X “ 136 plan to vote
yes. Therefore our estimate for p is

p̂ “ X “
X

n
“

136

400
“ 34%.

In other words, we estimate that 34% of the total population plans to vote yes. ///

Well, that’s great but we can’t just report this “statistic” without giving some measure of how
accurate we think it is.

Statistics Problem Part II. Consider a coin with an unknown parameter of P pHq “ p. In
order to estimate this parameter we flip the coin n times and let X be the number of heads
that we get. Then we report the number

p̂ “ X “ X{n

as our guess for the true value of p. But how confident are we in this guess? ///

This is a fairly ambiguous question and there are many different points of view. Today we’ll
discuss the notion of a “confidence interval,” which is the most common way to approach the
problem.

The Idea of a Confidence Interval. We have a constant unknown parameter p and a
random variable p̂ which is an unbiased estimator for p, i.e., Erp̂s “ p. We know that our
guess might be wrong so we want to find some estimate of the error. In the best case scenario
we are looking for a number e P R so that the true value of p is guaranteed to lie between
the numbers p̂´ e and p̂` e. But, sadly, this “absolute certainty” is impossible.

Therefore we are willing to settle for “moral certainty.” For example, if 95% certainty is good
enough then we will search for a number e with the property that

P pp̂´ e ă p ă p̂` eq “ 95%.

This means that the true value of p will lie between p̂ ´ e and p̂ ` e in 95 out of every 100
runs of the experiment. ///

Let’s try to compute such a “95% confidence interval” for our polling example. Recall that X
is a binomial random variable with known parameter n “ 400 and unknown parameter p. We
will use the sample mean p̂ “ X{400 as an estimator for p.

19I’m not going to get all political here.

24



Since the mean and variance of the binomial random variable X are given by ErXs “ 400p and
VarpXq “ 400pp1´ pq, and since the number 400 is rather large, the Central Limit Theorem
tells us that pX ´ 400pq{

a

400pp1´ pq is approximately standard normal. In order to express
this in term of p̂ we write

Np0, 1q «
X ´ 400p

a

400pp1´ pq
“

X{400´ p
a

pp1´ pq{400
“

p̂´ p
a

pp1´ pq{400
“

20pp̂´ pq
a

pp1´ pq
.

If Z is a true standard normal variable then we can look up in our table that

P p´1.96 ă Z ă 1.96q “ 95%.

Hence in our case we obtain an approximation20

95% « P

˜

´1.96 ă
20pp̂´ pq
a

pp1´ pq
ă 1.96

¸

“ P

˜

´1.96 ¨

a

pp1´ pq

20
ă p̂´ p ă 1.96 ¨

a

pp1´ pq

20

¸

“ P

˜

´1.96 ¨

a

pp1´ pq

20
ă p´ p̂ ă 1.96 ¨

a

pp1´ pq

20

¸

“ P

˜

p̂´ 1.96 ¨

a

pp1´ pq

20
ă p ă p̂` 1.96 ¨

a

pp1´ pq

20

¸

“ P pp̂´ e ă p ă p̂` eq ,

where the error is given by

e “ 1.96 ¨

a

pp1´ pq

20
“ 0.098 ¨

a

pp1´ pq.

Here’s the good news and the bad news:

• The good news is that we have found an approximate 95% confidence interval for p.
That is, in approximately 95% of the runs of this experiment, the true value of p will lie
between p̂´ e and p̂` e.

• The bad news is that our formula for e depends on the unknown parameter p which
we are trying to estimate. Therefore our result is completely useless.

Or is it? We can’t just give up, so we need to find an approximate value for the error e. The
idea here is obvious, even if it is mathematically dubious:

20You might wonder we don’t use a continuity correction here. Maybe we should, but then our answer won’t
match the textbook answer.
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In the formula for e we will replace the unknown p by the known p̂. Since 400 is
rather large the variance Varpp̂q “ pp1 ´ pq{400 is rather small, so it is probably
okay to assume that p̂ « p. Isn’t this reasoning a bit circular? Yes it is, but
hopefully it works anyway. We can always try to improve it later.

In other words, we assume that the following approximation holds:

P

˜

p̂´ 1.96 ¨

a

p̂p1´ p̂q

20
ă p ă p̂` 1.96 ¨

a

p̂p1´ p̂q

20

¸

« 95%.

Finally, by plugging in the experimental value p̂ “ X{400 “ 136{400 “ 0.34 we obtain

P

˜

0.34´ 1.96 ¨

a

p0.34qp0.66q

20
ă p ă 0.34` 1.96 ¨

a

p0.34qp0.66q

20

¸

« 95%

P p0.34´ 0.046 ă p ă 0.34` 0.046q « 95%

In summary: A poll of 400 people finds that 136 plan to vote “yes.” If p is the true proportion
of “yes” voters in the whole population then we can report to our boss that

34%´ 4.6% ă p ă 34%` 4.6%,

29.4% ă p ă 38.6%,

with a confidence of approximately 95%.

Here’s the general story.

Confidence Intervals for Proportions. Suppose we have a coin where the probability of
heads P pHq “ p is unknown. To estimate the parameter p we flip the coin n times and let X
be the number of heads we get. Then p̂ “ X{n is an unbiased estimator for p.

Suppose that Z „ Np0, 1q and let zα{2 be the unique number satisfying

P p´zα{2 ă Z ă zα{2q “ 1´ α.

For example, we have seen that z0.05{2 “ z0.025 “ 1.96. Then we have the following formulas
for p1´ αq100% confidence intervals:

(1) If n is large then we assume that p « p̂ and hence

P

˜

p̂´ zα{2 ¨

c

p̂p1´ p̂q

n
ă p ă p̂` zα{2 ¨

c

p̂p1´ p̂q

n

¸

« 1´ α.
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(2) If n is small then instead of p̂˘ zα{2 ¨
a

pp1´ pq{n we use the more accurate21 interval

p̂` z2
α{2{p2nq ˘ zα{2

b

p̂p1´ p̂q{n` z2
α{2{p4n

2q

1` z2
α{2{n

.

These intervals are applicable as long as the true proportion p is not too close to 0 or 1. When
this is not the case our textbook suggests the following rule:

(3) If we have reason to believe that p is close to 0 or 1 then instead of the sample mean
p̂ “ X{n we will use the strange estimator22 p̃ “ pX ` 2q{pn` 4q. If n is large then by
reasoning similar to (1) we obtain

P

˜

p̃´ zα{2 ¨

c

p̃p1´ p̃q

n` 4
ă p ă p̃` zα{2 ¨

c

p̃p1´ p̃q

n` 4

¸

« 1´ α.

If p is close to 0 or 1 and if n is small then I have no idea what to do.

And here’s a final application.

Application (Hypothesis Testing23). Suppose we have a coin with an unknown parameter
p “ P pHq. We flip the coin 200 times and get heads 116 times. Is the coin fair?

Let H0 be the event “the coin is fair,” which we call our null hypothesis. In order to test this
hypothesis we will compute an approximate 95% confidence interval for the unknown p and
we will reject H0 if the null value p0 “ 50% falls outside this interval. Otherwise we will fail
to reject H0.

Our estimator for p is p̂ “ 116{200 “ 58%. Since n “ 200 is relatively large we will use the
most basic confidence interval, number (1) above. At the p1 ´ αq100% “ 95% of confidence
we have

P

˜

0.58´ 1.96 ¨

c

p0.58qp0.42q

200
ă p ă 0.58` 1.96 ¨

c

p0.58qp0.42q

200

¸

« 95%,

P p58%´ 6.84% ă p ă 58%` 6.84%q « 95%,

P p51.16% ă p ă 64.84%q « 95%.

Since p0 “ 50% does not fall in the 95% confidence interval r51.16%, 64.84%s for the unknown
p, we reject the null hypothesis H0. In other words, we conclude that the coin is not fair.

21Details omitted.
22Which is also biased.
23The hypothesis test in this example is a bit nonstandard. If we had more time I would use the jargon of

Type I and Type II errors expressed with the letters α and β. However, there is no new mathematics involved
in that stuff so you should be able to learn it quickly on your own.
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Nov 30 and Dec 5

Last time we discussed confidence intervals for proportions. For example, these allow us to
estimate the probability of “heads” for an unknown coin, or to estimate the proportion of
“yes” voters in a certain population by performing a random poll. Mathematically we can
model both of these experiments as taking independent samples of an underlying Bernoulli
distribution with an unknown parameter p.

On ther other extreme, suppose we have a distribution that is approximately normal with
unknown parameters µ and σ2. In this case we would like to estimate the values of µ and σ2

by taking independent samples from the distribution. That’s what we’ll do today. But first
let me clarify some definitions from last time.

Definition of Confidence Intervals. Let X be a random variable depending on some fixed
but unknown parameter θ. Let X1, X2, . . . , Xn be the results of n independent samples from
X and let θ̂ be some random variable that is computed from the samples. We say that θ̂ is
an unbiased estimator for θ if

Erθ̂s “ θ.

For this to be useful, we need to know how close (on average) this estimator is to the true
value of θ. There are many ways to address this problem, the most popular of which is to
compute a confidence interval, as follows. We say that θ̂ ˘ eα{2 is a two-sided p1 ´ αq100%
confidence interval for θ if

P pθ̂ ´ eα{2 ă θ ă θ̂ ` eα{2q “ 1´ α.

Please note here that the unknown parameter θ is constant, while the estimator θ̂ is a
random variable. The equation above says that the true value θ will fall within the random
interval θ̂ ˘ eα{2 for p1´ αq100% of the runs of this experiment.

If desired we can also consider one-sided p1´ αq100% confidence intervals given by

P pθ̂ ´ eα ă θq “ 1´ α,

P pθ ă θ̂ ` eαq “ 1´ α.

///

We assume that the estimator θ̂ is easy to compute. For example, it could be the sample mean
X “ pX1 `X2 ` ¨ ¨ ¨ `Xnq{n. Thus the real difficulty is to compute the error bounds eα and
eα{2 for various values of α. For this purpose it is convenient to make the following definition.

P -Values for the Standard Normal Distribution.

The “P” in the term “P -value” stands for “probability.” However, since “P” is currently being
used for other things (such as the probability of heads) we will use “α” instead.
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Let Z „ Np0, 1q be a standard normal random variable and let 0 ă α ă 1 be any possible
probability value (i.e., P -value). Then there exists a unique number zα with the property

P pZ ě zαq “ α.

This is clearer if we look at a picture. Here, α is the area of the tail to the right of zα:

By symmetry, the area of the left tail to the left of ´zα is also equal to α, so that

α “ P pZ ď ´zαq “ P pZ ă ´zαq “ 1´ P pZ ě ´zαq

and hence P pZ ě ´zαq “ 1 ´ α. But z1´α is by definition the unique number satisfying
P pZ ě z1´αq “ 1´ α, which implies that

z1´α “ ´zα.

Finally, let me note that

P p´zα{2 ď Z ď zα{2q “ 1´ α,

which can be seen in the following picture:

A table of the numbers zα can be found on page 495 of our textbook, however this table is
not really necessary. Indeed, because of the formula

Φpzαq “ 1´ α
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we could find the same information by doing a reverse look-up in the table of Φpzq values on
page 494. I honestly have no idea why they include both tables. ///

We saw last time that the numbers zα can be used to compute confidence intervals for the
mean of an unknown Bernoulli distribution. Today we’ll use them to compute confidence
intervals for the mean of an unknown normal distribution.

Let X1, X2, . . . , Xn be independent samples from a normal distribution Npµ, σ2q. As usual,
the sample mean X “ pX1 ` ¨ ¨ ¨ `Xnq{n is an unbiased estimator24 for the population mean
µ. Therefore we will write

µ̂ “ X.

When X was a Bernoulli, we knew from the Central Limit Theorem that X was approximately
normal. Now the situation is even nicer.

The Sample Mean for Normal Distribution is Normal. Let X „ Npµ, σ2q and let
X “ pX1 ` ¨ ¨ ¨ ` Xnq{n be the mean of n independent samples from X. Then X has an
exactly normal distribution:

X „ N

ˆ

µ,
σ2

n

˙

.

Proof: The normality of X follows from the “stability” properties of normal distributions, of
which you proved a special case on HW5. Thus we only need to check that X has the claimed
mean and variance:25

ErXs “
1

n
pErX1s ` ¨ ¨ ¨ ` ErXnsq “

1

n
pµ` ¨ ¨ ¨ ` µq “

1

n
¨ nµ “ µ,

VarpXq “
1

n2
pVarpX1q ` ¨ ¨ ¨ `VarpXnqq “

1

n2
pσ2 ` ¨ ¨ ¨ ` σ2q “

1

n2
¨ nσ2 “

σ2

n
.

///

It follows from this (by the same “stability” properties) that the standardization of X has an
exactly standard normal distribution:

X ´ ErXs
b

VarpXq
“
µ̂´ µ

σ{
?
n
„ Np0, 1q.

24This is true for any distribution whatsoever, not only for the Bernoulli and normal distributions.
25We already did this when we discussed the Central Limit Theorem but sufficiently many of you probably

don’t remember.
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Let’s use this to find an exact p1´ αq100% confidence interval for the mean. By definition of
the numbers zα we have

1´ α “ P

ˆ

´zα{2 ă
µ̂´ µ

σ{
?
n
ă zα{2

˙

“ P

ˆ

´zα{2 ¨
σ
?
n
ă µ̂´ µ ă zα{2 ¨

σ
?
n

˙

“ P

ˆ

´zα{2 ¨
σ
?
n
ă µ´ µ̂ ă zα{2 ¨

σ
?
n

˙

“ P

ˆ

µ̂´ zα{2 ¨
σ
?
n
ă µ ă µ̂` zα{2 ¨

σ
?
n

˙

.

As with Bernoulli sampling, there is good news and bad news:

• The good news is that we have found an exact p1 ´ αq100% confidence interval for
the mean µ of a normal distribution. That is, if we take n independent samples and
compute the sample mean X, then there is an exactly p1´αq100% chance that the true
mean µ lies in the interval X ˘ zα{2 ¨ σ{

?
n.

• The bad news is that our formula for this confidence interval depends on the unknown
parameter σ. (Indeed, if µ is unknown to us then why would we know σ?) Therefore
our result is completely useless.

Or is it? Since it’s not okay to give up, we must come up with some kind of estimator for the
unknown variance σ2. Our first guess might be to use the formula

V “
1

n

n
ÿ

i“1

pXi ´Xq
2.

This formula is not so bad. However, you will prove on HW6 that the expected value of the
random variable V is

ErV s “
n´ 1

n
¨ σ2 ‰ σ2,

and hence V is a (slightly) biased estimator for the variance. In order to fix this situation we
make the following definition.

Sample Variance and Sample Standard Deviation. Suppose that we take a random
sample X1, X2, . . . , Xn from an underlying population with mean µ and variance σ2. Then we
define the sample variance by the formula

S2 “
1

n´ 1

n
ÿ

i“1

pXi ´Xq
2.

Please note that the strange random variable S2 is related to the nice random variable V by
the equation S2 “ n

n´1 ¨ V and your computation from HW6 gives

ErS2s “ E

„

n

n´ 1
¨ V



“
n

n´ 1
¨ ErV s “

�n

���n´ 1
¨
���n´ 1

�n
¨ σ2 “ σ2.
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We conclude that the sample variance S2 is an unbiased estimator for the population variance
σ2. This is the reason that we use n´ 1 in the denominator instead of n.

As suggested by the notation, we define the sample standard deviation S as the positive square
root of the sample variance:26

S “
?
S2 “

g

f

f

e

1

n´ 1

n
ÿ

i“1

pXi ´Xq2.

///

Now by using S as an estimator for the standard deviation σ we can finally compute confidence
intervals for the mean of a normal distribution.

Confidence Intervals for the Mean of a Normal Distribution. Let X1, X2, . . . , Xn

be independent samples from a normal population with mean µ and σ2. Let X and S be
the sample mean and sample standard deviation. Then we have the following p1 ´ αq100%
confidence intervals for µ:

(1) If n is large then the sample standard deviation S is a good enough estimator for σ
so that the random variable pX ´ µq{pS{

?
nq has an approximately standard normal

distribution:
X ´ µ

S{
?
n
« Np0, 1q.

Thus we obtain an approximate confidence interval for the unknown mean:

P

ˆ

X ´ zα{2 ¨
S
?
n
ă µ ă X ` zα{2 ¨

S
?
n

˙

« 1´ α.

(2) If n is small then the normal approximation from part (1) is not good enough. Instead
we need to know the exact distribution of the standardized sample mean:

X ´ µ

S{
?
n

has a “t distribution with n´ 1 degrees of freedom.”

I don’t want to get into the details of t distributions. I will simply note that for each whole
number r there is a “t distribution with r degrees of freedom” which looks approximately
like a normal curve. The corresponding critical values tαprq can be looked up in the table
on page 465. Thus we obtain an exact confidence interval for the unknown mean:

P

ˆ

X ´ tα{2pn´ 1q ¨
S
?
n
ă µ ă X ` tα{2pn´ 1q ¨

S
?
n

˙

“ 1´ α.

26Recall that the expectation function does not preserve multiplication. That is, in general we have ErXY s ‰
ErXs ¨ErY s. Therefore we have no reason to expect that ErSs2 “ ErS2

s, and in fact this equation is false. In
other words, the sample standard deviation is a biased estimator for the population standard deviation. Oh
well, we can’t win every time.
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These confidence intervals are still reasonable when the underlying population is only ap-
proximately normal. If the underlying population has a different shape then we will need
different techniques.

I will illustrate these ideas with an example from the textbook.

Example 7.1-5. Let X be the amount of butterfat that a typical cow produces during a
certain period of time.27 We will assume that X has a normal distribution Npµ, σ2q. In order
to estimate µ a farmer measured the butterfat production for n “ 20 cows and obtained the
the following independent observations X1, X2, . . . , X20:

481 537 513 583 453 510 570 500 457 555
618 327 350 643 499 421 505 637 599 392

From these 20 observations we compute the sample mean

X “
1

20

20
ÿ

i“1

Xi “ 507.5

and the sample standard deviation

S “

g

f

f

e

1

20´ 1

20
ÿ

i“1

pXi ´Xq2 “ 89.75.

We will use X “ 507.5 as our point estimate for the population mean µ. But how accurate is
this estimate?

If we knew σ exactly then we would know that pX ´ µq2{pσ{
?

20q is standard normal and we
would proceed from there to compute an exact confidence interval:

P

ˆ

507.5´ zα{2 ¨
σ
?

20
ă µ ă 507.5` zα{2 ¨

σ
?

20

˙

“ 1´ α.

However, since we don’t know σ, we have to use the estimator S “ 89.75. If the number of
samples n “ 20 were large we would still obtain an approximate confidence interval:

P

ˆ

507.5´ zα{2 ¨
89.75
?

20
ă µ ă 507.5` zα{2 ¨

89.75
?

20

˙

« 1´ α.

However, since n “ 20 is relatively small we should be more precise and use the fact that
pX ´ µq2{pS{

?
20q has a t distribution with 20´ 1 “ 19 degrees of freedom. Then we obtain

an exact confidence interval:

P

ˆ

507.5´ tα{2p19q ¨
89.75
?

20
ă µ ă 507.5` tα{2p19q ¨

89.75
?

20

˙

“ 1´ α.

27Irrelevant details omitted.
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And it only remains to choose our desired level of confidence. For a p1 ´ αq100% “ 90%
confidence interval we look in the table on page 496 to find tα{2p19q “ t0.05p19q “ 1.729 and
then we obtain

P

ˆ

507.5´ 1.729 ¨
89.75
?

20
ă µ ă 507.5` 1.729 ¨

89.75
?

20

˙

“ 90%,

P p507.5´ 34.7 ă µ ă 507.5` 34.7q “ 90%,

P p472.8 ă µ ă 542.2q “ 90%.

///

Closing Remarks: These results are only valid as long as the underlying distribution of but-
terfat X is (approximately) normal. There are methods that one could use to check this
assumption (such as a quantile-quantile plot, see page 253 in the text). If it turns out that
X is not normally distributed then the methods discussed here are not appropriate. Then we
would have two options.

(1) Find a more accurate guess for the distribution shape of X and use exact information
about such curves to compute confidence intervals for µ.

(2) Instead of looking for the mean µ we could investigate the median, or 50-th percentile
m “ π0.5 of the population. There exist techniques to compute confidence intervals for
the median (and other percentiles) that are independent of the shape of the underlying
distribution of X. (See section 7.5 of the text.)

You will learn about these things if you go further into statistics.

Dec 7

We discussed the solutions to HW6 and then I gave a review of topics for Exam 3. The only
difference from Exams 1 and 2 is that you will be able to use scientific calculators (no wi-fi
or cell signals). I will also provide tables of relevant statistical functions. Here’s the review:

• Discrete vs. Continuous Random Variables I. A discrete random variable X has
a probability mass function (pmf) defined by

fXpkq “

#

P pX “ kq if k is an integer,

0 otherwise.

However, this won’t work for continuous random variables. Indeed, if X is a continuous
random variable then for any fixed number k we must have P pX “ kq “ 0. Instead, we
define a continuous random variable in terms of a probability density function (pdf) fX
as in the following picture:
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For the discrete random variable on the left we have

P p4 ď X ď 6q “ P pX “ 4q ` P pX “ 5q ` P pX “ 6q

P p4 ă X ď 6q “ P pX “ 5q ` P pX “ 6q

P p4 ď X ă 6q “ P pX “ 4q ` P pX “ 5q

P p4 ă X ă 6q “ P pX “ 5q.

For the continuous random variable on the right we have

P p1 ď X ď 5q “ P p1 ă X ď 5q “ P p1 ď X ă 5q “ P p1 ă X ă 5q “

ż 5

1
fXpkq dk.

We say that a general function f : RÑ R is a pdf when it satisfies

fpxq ě 0 for all x P R and

ż 8

´8

fpxq dx “ 1.

• Expected Value and Variance. Let fX : RÑ R be the pdf of a continuous random
variable X. Then we define the expected value by the formula

ErXs “

ż 8

´8

x ¨ fXpxq dx.

Just as in the discrete case, this integral represents the center of mass of the distribution.
More generally, we define the rth moment of X by the formula

ErXrs “

ż 8

´8

xr ¨ fXpxq dx.

As with the discrete case, the variance is defined as the expected distance between X
and its mean µ “ ErXs. That is, we have

VarpXq “ ErpX ´ µq2s
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“

ż 8

´8

px´ µq2 ¨ fXpxq dx

“

ż 8

´8

px2 ´ 2µx` x2q ¨ fXpxq dx

“

ˆ
ż 8

´8

x2 ¨ fXpxq dx

˙

´ 2µ

ˆ
ż 8

´8

x ¨ fXpxq dx

˙

` µ2

ˆ
ż 8

´8

fXpxq dx

˙

“ ErX2s ´ 2µ ¨ ErXs ` µ2 ¨ 1

“ ErX2s ´ 2µ2 ` µ2

“ ErX2s ´ µ2

“ ErX2s ´ ErXs2.

• Example: The Uniform Distribution. The uniform distribution on a real interval
ra, bs Ď R has pdf defined by

fXpxq “

#

1{pb´ aq a ď x ď b,

0 otherwise.

This is a pdf because we have fXpxq ě 0 for all x P R and the total area under the curve
is 1. Here’s a picture:

You should practice the definitions by proving that

ErXs “
a` b

2
and VarpXq “

pb´ aq2

12
.

• Discrete vs. Continuous Random Variables II. Discrete and continuous random
variables can be directly compared by looking at probability histograms. Let X be a
discrete random variable with pmf P pX “ kq and let Y be a continuous random variable
with pdf fY . Suppose that for all integers k we have

P pX “ kq « fY pkq.
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Then for any integers a ď b we can approximate the probability P pa ď X ď bq by the
area under the graph of fY , as follows:

P pa ď X ď bq «

ż b`1{2

a´1{2
fY ptq dt,

P pa ă X ď bq «

ż b`1{2

a`1{2
fY ptq dt,

P pa ď X ă bq «

ż b´1{2

a´1{2
fY ptq dt,

P pa ă X ă bq «

ż b´1{2

a`1{2
fY ptq dt.

Here’s a picture illustrating the second formula:

• De Moivre-Laplace. Let X be a (discrete) binomial random variable with parameters
n and p. If np and np1 ´ pq are both large, Abraham de Moivre (1730) and Pierre
Laplace (1810) showed that the pmf of X can be approximated by the pdf of a certain
continuous random variable:

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k «
1

a

2πnpp1´ pq
e´pk´npq

2{2npp1´pq.

The approximation is best for values of k near the mean ErXs “ np. This formula can
be used to estimate binomial probabilities for large values of n. For example, if n “ 3600
and p “ 1{2 then we have

P p1770 ď X ď 1830q «

ż 1830`0.5

1770´0.5

1
?

1800π
e´px´1800q2{1800 dx « 69.07%.

• Normal Distributions and the CLT. More generally, the normal distribution with
mean µ and σ2 is defined by the probability density function

npx;µ, σ2q “
1

?
2πσ2

e´px´µq
2{2σ2

.
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We will write X „ Npµ, σ2q to indicate that a continuous random variable X has this
pdf. Laplace was the first person to prove a version of the Central Limit Theorem (CLT),
which says the following.

Let X1, X2, . . . , Xn be independent and identically distributed random variables. For
example, these might be random samples taken from some fixed underlying distribution
with mean µ and variance σ2. We define the sample mean X “ pX1 ` ¨ ¨ ¨ `Xnq{n, and
one can check that

ErXs “ µ and VarpXq “ σ2{n.

No matter the shape of the underlying distribution, if n is large then Laplace proved
that the sample mean is approximately normal:

X “
X1 ` ¨ ¨ ¨ `Xn

n
« Npµ, σ2{nq.

This is the most important general result in all of statistics.

• The Standard Normal Distribution. Because of the CLT we want to be able to
work with normal distributions. The first important fact is that any normal distribution
can be “standardized”:

X „ Npµ, σ2q ðñ Z “
X ´ µ

σ
„ Np0, 1q.

If Z „ Np0, 1q has a standard normal distribution then we define its cumulative density
function (cdf) by

Φpzq “ P pZ ď zq “

ż z

´8

1
?

2π
e´x

2{2 dx.

The values of Φpzq can be looked up in a table. Furthermore, if 0 ă α ă 1 is any
probability value (i.e., “P -value) then we define the critical value zα to be the unique
number with the property

ż 8

zα

1
?

2π
e´x

2{2 dx “ P pZ ě zαq “ α.

These numbers can also be looked up in a table. Here are some pictures:
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• Application: Confidence Intervals. Suppose that we want to estimate an unknown
parameter θ of a certain interesting population. To do this we will take a random
sample X1, X2, . . . , Xn and then let θ̂ be some estimator that we can compute from the
sample. We call this an unbiased estimator if Erθ̂s “ θ. To compute a one- or two-
sided p1 ´ αq100% confidence interval we must find real numbers eα and eα{2 with the
properties

P pθ̂ ´ eα{2 ă θ ă θ̂ ` eα{2q “ 1´ α,

P pθ̂ ´ eα ă θq “ 1´ α,

P pθ ă θ̂ ` eαq “ 1´ α.

The interpretation is that the true unknown value of θ will fall inside such a random
interval in p1 ´ αq100% runs of the sampling experiment. The traditional “P -value” is
α “ 0.05.

If the random variable θ̂ has an approximately normal distribution then we can often
use the following equations as a starting point for our computations:

P p´zα{2 ă Z ă zα{2q “ 1´ α,

P p´zα ă Zq “ 1´ α,

P pZ ă zαq “ 1´ α.

• Confidence Intervals for a Proportion. Let X have a Bernoulli distribution with
unknown parameter p. In order to estimate p we take a random sample X1, . . . , Xn and
let p̂ “ X “ pX1 ` ¨ ¨ ¨ ` Xnq{n. If n is large, then since ErXs “ p and VarpXq “
pp1´ pq{n, we know from the CLT that

X ´ p

pp1´ pq{n
« Np0, 1q.

Therefore for any P -value 0 ă α ă 1 we have

P

ˆ

´zα{2 ă
X ´ p

pp1´ pq{n
ă zα{2

˙

« 1´ α,

which after a little algebraic manipulation becomes

P

˜

X ´ zα{2 ¨

c

pp1´ pq

n
ă p ă X ` zα{2 ¨

c

pp1´ pq

n

¸

« 1´ α.

Unfortunately, the bounds of the confidence interval involve the unknown parameter p.
There are several ways to fix this, the easiest of which is to use the crude approximation
p « p̂. This yields the p1´ αq100% confidence interval

p̂˘ zα{2 ¨

c

p̂p1´ p̂q

n
,

which is valid when n is large.
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• Confidence Intervals for the Mean of a Normal Distribution. Let X have a
normal distribution with mean µ and variance σ2. In order to estimate the unknown
µ we take a random sample X1, . . . , Xn and let µ̂ “ X “ pX1 ` ¨ ¨ ¨ ` Xnq{n. Since
ErXs “ µ and VarpXq “ σ2{n, we know from properties of normal distributions that

X ´ µ

σ{
?
n
„ Np0, 1q.

Therefore for any P -value 0 ă α ă 1 we have

P

ˆ

´zα{2 ă
X ´ µ

σ{
?
n
ă zα{2

˙

“ 1´ α,

which after a little algebraic manipulation becomes

P

ˆ

X ´ zα{2 ¨
σ
?
n
ă µ ă X ` zα{2 ¨

σ
?
n

˙

“ 1´ α.

If the standard deviation σ is known to us then we obtain the following exact p1´αq100%
confidence interval for the unknown µ:

X ˘ zα{2 ¨
σ
?
n
.

However, since µ is unknown to us it is very unlikely that we will know σ, in which case
we will estimate σ it with the sample standard deviation:

S “

g

f

f

e

1

n´ 1

n
ÿ

i“1

pXi ´Xq2.

If n is large then we obtain an approximate p1´ αq100% confidence interval for µ:

X ˘ zα{2 ¨
S
?
n
.

If n is small then will use the fact28 that pX ´ µq{pS{
?
nq has a “t distribution with

n´ 1 degrees of freedom” to compute an exact p1´ αq100% interval for µ:

X ˘ tα{2pn´ 1q ¨
S
?
n
.

One-sided intervals can be computed in a similar way by replacing α{2 with α and using
` or ´ instead of ˘.

28Unexplained.
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Dec 19 (Hurricane Irma Bonus Lecture)

To end this course I will give you a glimpse of Bayesian statistics, which is an alternative
to the more classical methods that we discussed before the exam. Bayesian techniques are
among the newest and the oldest ideas in statistics. Oldest, because these are the methods
that were first attempted by Thomas Bayes and Pierre-Simon Laplace in the late 1700s. And
newest, because the methods are computationally difficult and are becoming more popular as
computers get faster.

In Part I of this course we discussed the notions of conditional probability and Bayes’ theorem.
In fact, the reverend Thomas Bayes (1701–1761) never published this result; his notes were
edited and published posthumously by Richard Price in 1763 under the title An Essay towards
solving a Problem in the Doctrine of Chances. We will discuss this work today.

The work begins by clearly stating the problem (in English).

Bayes’ Problem (1763).

Given the number of times ion which an unknown event has happende and failed:
Required the chance that the probability of its happening in a single trial lies
somewhere between any two degrees of probability that can be named.

///

In other words, there exists an unknown “coin” with an unknown probability p of “heads.”
The coin is “flipped” n times and heads shows up k times. Given this data we are asked to
find the probability the probabiliy that p falls in any given interval: a ă p ă b.

Here is a summary of our previous approach to the problem.

Classical Approach to the Problem. We think of p as a fixed constant. The value of p
is unknown to us, but it is known to God (or Nature, in the parlance of the 1700s). In order
to estimate p we flip the coin n times and let X be the number of heads we get. Then we let
p̂ “ X{n be our estimator for p. If n is large then the Central Limit Theorem says that

p̂´ p
a

pp1´ pq{n
is approximately a standard normal random variable.

And from this we obtain the confidence interval

P

˜

p̂´ zα{2

c

pp1´ pq

n
ă p ă p̂` zα{2

c

pp1´ pq

n

¸

« 1´ α

for any value 0 ă α ă 1. ///

Unfortunately, we see that the unknown constant p occurs in the upper and lower bounds of
the confidence interval. At this point we boldly substituted p̂ for p in these bounds. However,
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this is a mathematically sloppy thing to do. In addition, we can only use this method to
find symmetric confidence intervals around p, whereas Bayes’ problem wants us to compute
P pa ă p ă bq for any numbers a ă b.

Actually, Bayes’ problem is nonsensical from the classical point of view. Since a, b and p are
all constant (i.e., not random), we either have

P pa ă p ă bq “ 1 or P pa ă p ă bq “ 0,

depending on whether the statement “a ă p ă b” is true or false.

Here is how Bayes and Price approached the problem.

Bayesian Approach to the Problem. Instead of viewing p as an unknown constant, we will
think of p as a random variable with a certain density that represents our always imperfect
knowledge of p. As we gain information through experiment, the density of p will update to
incorporate this new information.29 Before any experiments were performed, Bayes supposed
that all values of p were equally likely. In other words, he assumed that the prior distribution
of p is uniform on the interval r0, 1s:

Thus, to begin with, we have P pa ă p ă bq “ 1{pb ´ aq for any 0 ď a ď b ď 1. In order to
gain more information about p we perform the following experiment: Flip the coin n times
and let X be the number of heads that we get. Note that the random variables X and p are
certainly not independent. Assume that we perform the experiment and get X “ k. Then
the new distribution of p is given by the conditional probability

P pa ă p ă b |X “ kq “
P pa ă p ă b and X “ kq

P pX “ kq
.

The only issue now is to compute the probabilities on the right. ///

29The distinction between classical and Bayesian statistics is akin to the distinction between classical and
quantum physics. In the classical picture an electron is a point particle with an actual position that we want to
measure. In quantum physics an electron does not have a definite position. Instead is has a “wave function,”
which encodes its position as a probability distribution.
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Before showing you Bayes’ solution, I will illustrate the concepts with a toy example.

Toy Example of Bayesian Statistics. Suppose that there are three bowls on a table
containing red and white chips, as follows:

The table is locked in a secret room to which only our friend has the key. We send our friend
into the room and he comes back with a red chip.

Problem: Which bowl did the chip come from?

We could just ask our friend from which bowl he pulled the chip. However, in this scenario
he is not allowed to tell us; are we are allowed to know is the color of the chip. Before the
experiment is performed we have no information about the chip. In this case it is reasonable
to assume that all three bowls are equally likely. This will be our prior distribution:

i 1 2 3

P pBiq 1{3 1{3 1{3

After we find out that the chip is red, we should update this distribution to reflect the new
information. In particular, we should replace the prior distribution P pB1q, P pB2q, P pB3q with
the posterior distribution P pB1|Rq, P pB2|Rq, P pB3|Rq where R is the event that “the chip is
red.” According to the definition of conditional probability we have

P pBi|Rq “
P pBi XRq

P pRq
and P pR|Biq “

P pRXBiq

P pBiq
.

Since P pBi XRq “ P pRXBiq we can combine these equations to obtain Bayes’ theorem:

P pBi|Rq “
P pBiqP pR|Biq

P pRq
.

We can also compute the probability P pRq using the law of total probability:

R “ pRXB1q \ pRXB2q \ pRXB3q

P pRq “ P pRXB1q ` P pRXB2q ` P pRXB3q
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P pRq “ P pB1qP pR|B1q ` P pB2qP pR|B2q ` P pB3qP pR|B3q.

In summary we obtain the following formula, which shows us how to obtain the posterior
distribution from the prior distribution:

P pBi|Rq “
P pBiqP pR|Biq

P pB1qP pR|B1q ` P pB2qP pR|B2q ` P pB3qP pR|B3q
.

Recall that we have chosen the “uninformative” prior distribution P pB1q “ P pB2q “ P pB3q “

1{3. Since we know the chips in each bowl we can also compute

P pR|B1q “
2

2` 2
“

1

2
, P pR|B2q “

1

1` 2
“

1

3
, P pR|B3q “

5

5` 4
“

5

9
.

Finally, by plugging in these values we obtain the posterior distribution when the chip is red.
For fun, I also calculated the posterior distribution when the chip is white:

i 1 2 3

P pBiq 1{3 1{3 1{3

P pBi|Rq 9{25 6{25 10{25

P pBi|W q 9{29 12{29 8{29

Here’s a picture:

We still don’t know which bowl the chip came from, but at least we can now make an educated
guess: If the chip is red, it probably came from bowl 3. If the chip is white, it probably came
from bowl 2. ///

In the case of Bayes’ problem we want to perform the same steps, but with continuous distri-
butions instead of discrete. In other words, we are looking for the density function fpxq with
the property

P pa ă p ă b |X “ kq “

ż b

a
fpθq dθ,

which we interpret as follows:
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Bayes used a geometric argument to show that

fpθq “ pn` 1q

ˆ

n

k

˙

θkp1´ θqn´k.

To explain this formula, let’s go back to the toy example. Let X,Y be discrete random
variables and let Θ be a continuous random variable. Suppose that P pY “ `q is the prior
pmf of Y . The posterior pmf of Y |X “ k is determined by Bayes’ theorem

P pY “ ` |X “ kq “
P pY “ `q ¨ P pX “ k |Y “ `q

P pX “ kq
,

and the denominator P pX “ kq can be expanded using the law of total probability:

P pX “ kq “
ÿ

`

P pY “ `q ¨ P pX “ k |Y “ `q.

Now let fΘpθq be the prior pdf of Θ. Since Θ is continuous, the posterior pdf of Θ |X “ k
must be defined by some functionfΘ|X“kpθq satisfying

P pa ă Θ ă b |X “ kq “

ż b

a
fΘ|X“kpθq dθ for all real numbers a ď b.

To compute the function fΘ|X“kpθq we use the same Bayes’ theorem, but this time we replace
the mass functions P pY “ `q and P pY “ ` |X “ kq by their corresponding densities:

fΘ|X“kpθq “
fΘpθq ¨ P pX “ k |Θ “ θq

P pX “ kq
,

and we replace the sum in the denominator by the corresponding integral:

P pX “ kq “

ż 8

´8

fΘpθq ¨ P pX “ k |Θ “ θq.

///

45



Now let’s return to Bayes’ problem. In this case, X is the number of heads in n flips of the coin
and Θ “ p is the underlying probability of heads. Just as with the bowls in the toy example,
we will use the “uninformative” prior distribution, i.e., we will assume that all possible values
of p are equally likely. In the continuous case this means that we will use a uniform pdf:

fppθq “

#

1 when 0 ď θ ď 1,

0 otherwise.

Furthermore, we know for any specific value p “ θ that X has a binomial pmf:

P pX “ k | p “ θq “

ˆ

n

k

˙

θkp1´ θqn´k.

Putting these ingredients together gives us a formula for the posterior density of p, assuming
that that we flipped the coin n times and obtained heads X “ k times:

fp|X“kpθq “
fppθq ¨ P pX “ k | p “ θq

ş8

´8
fppθq ¨ P pX “ k | p “ θq

“

`

n
k

˘

θkp1´ θqn´k
ş1
0

`

n
k

˘

tkp1´ tqn´k dt
.

One can also show30 that the integral in the denominator evaluates to

P pX “ kq “

ż 1

0

ˆ

n

k

˙

tkp1´ tqn´k dt “
1

n` 1
.

This formula is very interesting. It tells us that if the probability of heads P pHq “ p has
the uniform distribution on r0, 1s then the number of heads X in n flips has the uniform
distribution on k “ 0, 1, . . . , n ` 1. This fits very well with the assumption that we know
nothing about the coin.

Finally, we can verify that Bayes’ formula for the posterior density of p |X “ k is correct:

fp|X“kpθq “ pn` 1q

ˆ

n

k

˙

θkp1´ θqn´k.

That was a lot of work. Let’s get on to solving the problem.

Bayesian Solution to the Problem. Suppose there is a coin with P pHq “ p and that this
coin is completely unknown to us. To express our lack of knowledge about the coin we will
say that p begins as a random variable with a uniform prior distribution:

fppθq “

#

1 when 0 ď θ ď 1,

0 otherwise.

To gain knowledge about the coin we ask a friend to go into the secret room where it is stored,
to flip the coin n times and record the number X of heads. If our friend comes back and

30omitted
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reports that X “ k then our new state of knowledge is encoded by the following posterior
distribution:

fp|X“kpθq “ pn` 1q

ˆ

n

k

˙

θkp1´ θqn´k.

Using this knowledge we can compute the probability that the unknown p falls between any
real numbers 0 ď a ď b ď 1:

P pa ă p ă b |X “ kq “

ż b

a
pn` 1q

ˆ

n

k

˙

θkp1´ θqn´k dθ.

///

Small Example. Suppose that an unknown coin is flipped n “ 20 times and X “ 14 heads
are obtained. Assuming that the probability of heads p has a uniform prior distribution,
compute the posterior probability that p ď 1{2.

Solution. According to Bayes’ formula the posterior density of p is

fp|X“14pθq “ 15

ˆ

20

14

˙

θ14p1´ θq20´14.

Then my laptop computes the probability:

P pp ď 1{2 |X “ 14q “

ż 1{2

0
15

ˆ

20

14

˙

θ14p1´ θq20´14 dθ “ 3.92%.

In other words, we can declare with more than 96% probability that this coin favors heads.
Here is a picture showing the prior and posterior densities of p, with the shaded area indicating
the conditional probability P pp ď 1{2 |X “ 14q:
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Historical Example. Laplace, births in Paris. Integral is impossible to compute so Laplace
used a normal approximation to the posterior. We can get a crude upper bound with Cheby-
shev’s inequality.

Beta distributions. Laplace’s rule of succession https://en.wikipedia.org/wiki/Rule_of_

succession
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