
MTH 224: Probability and Statistics Fall 2017
Course Notes 2 Drew Armstrong

Oct 17

We have finished covering the basics of probability. The next section of the course is all about
“random variables.” What is a random variable?

To motivate the definition let’s discuss a hypothetical scenario. Suppose a student’s grade in
a certain class is based on their letter grades on three in-class exams, and suppose that this
student received the following grades:

Exam 1 Exam 2 Exam 3

Grade A B- A-

Question: If the three exams are weighted equally, what letter grade does this student receive
in the course?

Joke Answer: Since each exam is worth 1{3 of the final grade we obtain

Final Grade “
1

3
¨ “A”`

1

3
¨ “B-”`

1

3
¨ “A-” “

“A”` “B-”` “A-”

3
.

///

Of course you see that this is nonsense. It is meaningless to take the average of the three
symbols “A,” “B-,” and “A-” because these three symbols are not numbers. In order to
compute the final grade with this method we would need to have some recipe for converting
letter grades into numbers and then converting numbers back into letters. The following table
shows one possible way to do this (called the Grade Point Average):

Letter Grade GPA

A 4.00
A- 3.67
B+ 3.33
B 3.00
B- 2.67
etc. etc.

Under this scheme our student’s final GPA is

4.00` 2.67` 3.67

3
« 3.45,
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which I guess translates to a high B+.1 Thus we see that for some purposes it is necessary to
convert the possible outcomes of an experiment into numbers.

Definition of Random Variable. Consider an experiment with a sample space S of possible
outcomes. These outcomes can take any form, such as strings of Hs and T s or brands of cat
food. A random variable is any function X that turns outcomes into real numbers:

X : S Ñ R

///

For example, suppose that we flip a coin three times and record the number of Hs that we
get. The sample space of this experiment is

S “ tTTT,HTT, THT, TTH,HHT,HTH, THH,HHHu.

The random variable under consideration is X “ “number of Hs,” which we can think of as
a function X : S Ñ R that takes in a string s P S and spits out the number Xpsq of Hs it
contains. Here is a table:

outcome s P S TTT HTT THT TTH HHT HTH THH HHH

Xpsq 0 1 1 1 2 2 2 3

We will use the notation SX Ď R for the set of all possible values that the random variable
can take X. The textbook calls this the space of the random variable X. For example, the
space of our random variable X “ “number of heads” is

SX “ t0, 1, 2, 3u.

Warning: The textbook often writes S instead of SX which I find very confusing. The space
S of all possible outcomes of the experiment and the space SX of all possible values of the
random variable X are not the same set, except in very rare cases.

For each possible value k P SX we consider the event “X “ k”Ď S which is the set of all
outcomes s P S that satisfy Xpsq “ k. In our example, we have four possible values:

“X “ 0” “ tTTT u,

“X “ 1” “ tHTT, THT, TTHu,

“X “ 2” “ tHHT,HTH, THHu,

“X “ 3” “ tHHHu.

1Let me emphasize that I do not use any such scheme in my teaching. Instead, I keep all scores in numerical
form through the semester and only convert to letter grades at the very end. I sometimes estimate grade ranges
for individual exams, but these can only be approximations.
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If the coin is fair then each of the 8 possible outcomes is equally likely, and we obtain the
probabilities:

P pX “ 0q “
1

8
, P pX “ 1q “

3

8
, P pX “ 2q “

3

8
, P pX “ 3q “

1

8
.

Since the events “X “ k” partition the sample space (i.e., these events are exhaustive and
mutually exclusive), we observe that their probabilities must add up to 1:

S “ “X “ 0”\ “X “ 1”\ “X “ 2”\ “X “ 3”

P pSq “ P p“X “ 0”\ “X “ 1”\ “X “ 2”\ “X “ 3”q

1 “ P pX “ 0q ` P pX “ 1q ` P pX “ 2q ` P pX “ 3q.

In general, the function that takes in a possible value k P SX and spits out the probability
P pX “ kq is called the “frequency function” or the “probability mass function” (pmf) of the
random variable X.

Definition of Probability Mass Function. Let S be the sample space of an experiment
and consider a random variable X : S Ñ R. Let SX Ď R be the space of all possible values
of X. The probability mass function (pmf) of X is a real-valued function fX : SX Ñ R that
takes in a possible value k P SX and spits out the probability P pX “ kq of getting this value.
Kolomogorov’s three rules of probability imply that the pmf satisfies:

• For any k P SX we have fXpkq “ P pX “ kq ě 0.

• For any set of values A Ď SX we have

P pX P Aq “
ÿ

kPA

fXpkq “
ÿ

kPA

P pX “ kq.

• The sum over all possible values is

ÿ

kPSX

fXpkq “
ÿ

kPSX

P pX “ kq “ 1.

///

To show you that this is not as difficult as it sounds, let’s do an example from the textbook.

Example 2.1-3. Roll a fair 4-sided die twice and let X be the maximum of the two outcomes.
The sample space for this experiment is
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[Remark: I have treated the two dice as ordered because this leads to a sample space with
equally likely outcomes.] If X is the maximum of the two outcomes then we observe that the
space of possible values is

SX “ t1, 2, 3, 4u.

To compute the pmf we need to find the probability P pX “ kq for each value k P SX , and since
the elements of S are equally likely, we need only to count how many outcomes correspond to
each value of k. After a few moments of thought we find the following picture:

And we obtain the following table of probabilities:

k 1 2 3 4

P pX “ kq 1
16

3
16

5
16

7
16

Observe that we have

ÿ

kPSX

P pX “ kq “
4
ÿ

k“1

P pX “ kq “
1

16
`

3

16
`

5

16
`

7

16
“

1` 3` 5` 7

16
“

16

16
“ 1,
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as expected. The table above is one way to display the pmf, but there are others.

1. The pmf can be drawn. Since the input and output of the pmf are both real numbers,
we can graph the function fX : RÑ R just as we would in Calculus class. Two popular ways
to do this are the line graph and the histogram:

In the line graph, the probability of P pX “ kq is represented as the height a vertical line
drawn above k. In the histogram we draw instead a rectangle of width 1 and height P pX “ kq
centered at k. Therefore the probability in the histogram is represented by area. This will
be very important later when we consider continuous random variables; then the area of
rectangles in the histogram will be replaced by the area under a smooth curve.

2. The pmf might have a formula. In our case, one can see by trial and error that

fXpkq “ P pX “ kq “
2k ´ 1

16
.

This is the most succinct way of encoding the distribution of this random variable. ///

We have seen that probability can be visualized as a length (in the line graph) or as an area
(in the histogram). So why do we call it the probability mass function?

To understand this, we should think of the probabilities fXpkq as point masses distributed
along a line. Is it natural to consider the question of where this distribution of masses will
balance:
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The only way to solve this is by using principles from physics. In particular, we will use
Archimedes’ Law of the Lever, which says the following:

Suppose that we have two point masses m1 and m2 on a balance board, at distances d1 and d2
from the fulcrum, respectively. Archimedes says that this system is in balance precisely when

m1d1 “ m2d2.

To apply this principle to probability, let us consider a simple random variable X : S Ñ R
with only two possible values, SX “ tk1, k2u. We are looking for a real number µ P R (“µ” is
for “mean”) such that the following system is in balance:
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I will assume that k1 ă µ ă k2, but this isn’t really important. (The math will work out
in any case.) Observe from the diagram that the point masses P pX “ k1q and P pX “ k2q
have distance µ´ k1 and k2´µ from the fulcrum, respectively. According to Archimedes, the
system is in balance precisely when

pµ´ k1qP pX “ k1q “ pµ´ k2qP pX “ k2q

µP pX “ k1q ` µP pX “ k2q “ k1P pX “ k1q ` k2P pX “ k2q

µ rP pX “ k1q ` P pX “ k2qs “ k1P pX “ k1q ` k2P pX “ k2q,

and since P pX “ k1q ` P pX “ k2q “ 1 this simplifies to

µ “ k1P pX “ k1q ` k2P pX “ k2q.

The same computation can be carried out for random variables with more than two possible
values. This motivates the following definition.

Definition of Expected Value. Consider a discrete2 random variable X : S Ñ R and
let SX Ď R be its space of possible values. Let fX : SX Ñ R denote the probability mass
function. Then we define the mean or the expected value of X by the following formula:

µ “ ErXs “
ÿ

kPSX

kP pX “ kq “
ÿ

kPSX

kfXpkq.

The intuition is that µ is the center of mass for the probability mass function. ///

Getting back to our example, let X be the maximum value in two rolls of a fair 4-sided die
and recall that the pmf satisfies

k 1 2 3 4

P pX “ kq 1
16

3
16

5
16

7
16

2I’ll explain when this means when we discuss continuous random variables below.
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Then the expected value of X is

ErXs “
ÿ

kPSX

kP pX “ kq

“

4
ÿ

k“1

kP pX “ kq

“ 1P pX “ 1q ` 2P pX “ 2q ` 3P pX “ 3q ` 4P pX “ 4q

“ 1 ¨
1

16
` 2 ¨

3

16
` 3 ¨

5

16
` 4 ¨

7

16

“
1 ¨ 2` 2 ¨ 3` 3 ¨ 5` 4 ¨ 7

16

“
1` 6` 15` 28

16
“

50

16
“ 3.125.

Interpretation: If we perform this experiment many times and take the average of the resulting
values of X (i.e., the maximum number that showed up each time), then we expect the average
to be approximately 3.125.3 It is remarkable that Archimedes’ law of the lever helps us to
solve this problem.

If you open the front cover of the textbook you will see a catalogue of famous probability
distributions. We have already met a few of these:

Binomial Distribution. Consider a coin with P pHq “ p. Flip the coin n times and X be
the number of H’s that we get. As we know by now, the pmf of this random variable is

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k.

Any random variable with this pmf is called a binomial random variable. ///

Let’s compute the expection of a binomial random variable in the case n “ 3. The pmf is
given by the following table:

k 0 1 2 3

P pX “ kq p1´ pq3 3pp1´ pq2 3p2p1´ pq p3

Hence the expected value is

ErXs “ 0 ¨ P pX “ 0q ` 1 ¨ P pX “ 1q ` 2 ¨ P pX “ 2q ` 3 ¨ P pX “ 3q

3Don’t just take my word for it. Try it yourself.
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“������
0 ¨ p1´ pq3 ` 1 ¨ 3pp1´ pq2 ` 2 ¨ 3p2p1´ pq ` 3 ¨ p3

“ 3pp1´ pq2 ` 6p2p1´ pq ` 3p3

“ 3p
“

p1´ pq2 ` 2pp1´ pq ` p2
‰

“ 3p
”

p1´��2p` ��p
2q ` p��2p´�

�2p2q ` ��p
2
ı

“ 3p r1s

“ 3p.

[Remark: There was a lot of lucky cancellation there.] Does the answer make sense? If our
coin has P pHq “ p then we can think of p as a ratio, telling us how often the coin shows
heads on average. If we flip the coin 3 times, then it is reasonable to expect that we will get
3p heads.

If we flip the coin n times, then it is reasonable to expect that we will see np heads because

np “ ptotal # flipsqpratio of flips that show headsq.

In other words, we believe that the following equation must be true:

ErXs “
n
ÿ

k“0

kP pX “ kq “
n
ÿ

k“0

k

ˆ

n

k

˙

pkp1´ pqn´k
?
“ np.

One of the problems on HW3 will guide you through a tricky proof of this. In the next class
I will show you another way to prove it that is easier but more abstract.

Hypergeometric Random Variable. Suppose that a bowl contains N1 red balls and N2

blue balls. You reach into the bowl and pull out n balls at random. Let X be the number of
red balls that you get. As we know by now, the pmf of this random variable is

P pX “ kq “

`

N1

k

˘`

N2

n´k

˘

`

N1`N2

n

˘ .

Any random variable with this pmf is called a hypergeometric random variable.4 ///

Example 2.2-5 in the textbook uses some tricks to compute the mean of the hypergeometric
distribution as follows:

ErXs “
n
ÿ

k“0

kP pX “ kq “
n
ÿ

k“0

k

`

N1

k

˘`

N2

n´k

˘

`

N1`N2

n

˘ “ n

ˆ

N1

N1 `N2

˙

.

Without worrying about the details, does the final answer make sense? Yes: The ratio of red
balls in the bowl is N1{pN1 ` N2q. Therefore if we reach in and grab n it makes sense that
the number of red balls we expect to get is

n

ˆ

N1

N1 `N2

˙

“ p# of balls we grabqpratio of red balls in the bowlq.

4In my opinion this name is way too fancy. Sadly, it is too late to change it.
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The final example for today is a bit less familiar, but we’ve seen it once or twice.

Geometric Random Variable. Consider a coin with P pHq. Begin to flip the coin and
continue until you get H, then stop. Let X be the number of flips that you did. I claim that
the pmf of this random variable is

P pX “ kq “ p1´ pqk´1p.

Any random variable with this pmf is called a geometric random variable. ///

Proof: This experiment is a bit tricky to analyze because it has an infinite sample space:

S “ tH,TH, TTH, TTTH, TTTTH, TTTTTH, . . .u .

The random variable X is just the length of the string, so that

XpHq “ 1,

XpTHq “ 2,

XpTTHq “ 3,

...

Thus the space of possible values of X is SX “ t1, 2, 3, . . .u. Since there is only one way to
get the value k P SX we conclude that

P pX “ kq “ P pTT ¨ ¨ ¨T
looomooon

k ´ 1 times

Hq “ P pT qP pT q ¨ ¨ ¨P pT q
looooooooooomooooooooooon

k ´ 1 times

P pHq “ P pT qk´1P pHq “ p1´ pqk´1pk.

///

The line graph of a geometric random variable looks like this:
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Since the set of possible values is infinite, the picture goes on forever to the right. How-
ever, since we are dealing with a probability distribution, we know that the infinite sum of
probabilites must equal 1. That is, we must have a convergent series:

1 “
ÿ

kPSX

P pX “ kq

1 “
8
ÿ

k“1

p1´ pqk´1pk

1 “ p` p1´ pqp` p1´ pq2p` p1´ pq3p` ¨ ¨ ¨

1 “ p
“

1` p1´ pq ` p1´ pq2 ` p1´ pq3 ` ¨ ¨ ¨
‰

1

p
“ 1` p1´ pq ` p1´ pq2 ` p1´ pq3 ` ¨ ¨ ¨ .

Is this true? Well, you may remember from Calculus II that if q is any number with |q| ă 1
then the so-called geometric series is convergent:

1` q ` q2 ` q3 ` ¨ ¨ ¨ “
1

1´ q
.

Now plugging in q “ 1 ´ p gives the desired result. This also explains why we call it a
geometric random variable.5

Thinking Homework:6 How many flips do you expect to make before you see the first H?

Oct 19

Consider an experiment with sample space S and let X : S Ñ R be any random variable. Let
SX Ď R be the set of possible values that X can take. Last time we defined the expected value
of X by the formula

ErXs “
ÿ

kPSX

kP pX “ kq.

The intuition behind this is that it represents the “center of mass” for the “probability mass
function” fXpkq “ P pX “ kq. However, there is another important formula for the expected
value that we will need today. I claim that

ÿ

kPSX

kP pX “ kq “
ÿ

sPS

XpsqP psq,

where the sum on the left is over all possible values of X and the sum on the right is over
all possible outcomes of the experiment. To see why this equation is true, the key idea is to
consider the event “X “ k” Ď S, which is defined as the set of outcomes with value k:

“X “ k” “ ts P S : Xpsq “ ku Ď S.

5Although we still might wonder why the infinite series is called “geometric.”
6Not to be handed in; just think about it. We’ll compute the answer later.
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Then P pX “ kq is the sum of the probabilites P psq for all s P S such that Xpsq “ k. I’ve
asked you to grapple with this on HW3. For now let’s just look at an example.

Example. Consider a coin with P pHq “ p. Flip the coin 2 times and let X be the number
of heads. On the one hand, we have the following table of outcomes and probabilities:

s TT HT TH HH

Xpsq 0 1 1 2

P psq p1´ pq2 pp1´ pq pp1´ pq p2

Using the s P S formula for expectation gives:

ErXs “
ÿ

sPS

XpsqP psq

“ XpTT qP pTT q `XpHT qP pHT q `XpTHqP pTHq `XpHHqP pHHq

“ 0 ¨ p1´ pq2 ` 1 ¨ pp1´ pq ` 1 ¨ pp1´ pq ` 2p2.

On the other hand, we have the following pmf for the binomial distribution:

k 0 1 2

P pX “ kq p1´ pq2 2pp1´ pq p2

Using the k P SX formula for expectation gives

ErXs “
ÿ

kPSX

kP pX “ kq

“ 0 ¨ P pX “ 0q ` 1 ¨ P pX “ 1q ` 2 ¨ P pX “ 2q

“ 0 ¨ p1´ pq2 ` 1 ¨ 2pp1´ pq ` 2 ¨ p2.

Do you see why these formulas give the same answer? It always works like this.

Today we will talk about creating new random variables from old. For example, suppose that
we have two (possibly different) random variables on the same experiment:

X,Y : S Ñ R.

You may remember from Calculus that real-valued functions can be “added pointwise.” In
this case we can define the new random variable X ` Y : S Ñ R by setting

pX ` Y qpsq “ Xpsq ` Y psq for all s P S.
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We can also multiply random variables by defining

pXY qpsq “ Xpsq ¨ Y psq for all s P S

and for any constant α P R we can “scale” the random variable X by defining

pαXqpsq “ α ¨Xpsq for all s P S.

In summary, we have three ways to combine random variables on the same experiment:

• addition,

• multiplication,

• scaling by constants.

Example. Continuing from the previous example, suppose we flip a coin twice, so that

S “ tTT,HT, TH,HHu.

We define two new random variables:

X1 “

#

1 if 1st flip is H

0 if 1st flip is T
X2 “

#

1 if 2nd flip is H

0 if 2nd flip is T

The following table shows the distribution of these random variables, and of their sum:

s TT HT TH HH

P psq p1´ pq2 pp1´ pq pp1´ pq p2

X1psq 0 1 0 1

X2psq 0 0 1 1

X1psq `X2psq 0 1 1 2

Observe that the sum X “ X1 `X2 is just a fancy way to describe the “number of heads,”
which we know has a binomial distribution. We saw in the previous example that

ErXs “ 0 ¨ p1´ pq2 ` 1 ¨ pp1´ pq ` 1 ¨ pp1´ pq ` 2 ¨ p2 “ 2p rp1´ pq ` ps “ 2p.

Now let’s compute the expectations of X1 and X2 using the same s P S formula. We have

ErX1s “ X1pTT qP pTT q `X1pHT qP pHT q `X1pTHqP pTHq `X1pHHqP pHHq

“ 0 ¨ p1´ pq2 ` 1 ¨ pp1´ pq ` 0 ¨ pp1´ pq ` 1 ¨ p2

“ p rp1´ pq ` ps

“ p
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and

ErX2s “ X2pTT qP pTT q `X2pHT qP pHT q `X2pTHqP pTHq `X2pHHqP pHHq

“ 0 ¨ p1´ pq2 ` 0 ¨ pp1´ pq ` 1 ¨ pp1´ pq ` 1 ¨ p2

“ p rp1´ pq ` ps

“ p.

Is it a coincidence that

2p “ ErXs “ ErX1 `X2s “ ErX1s ` ErX2s “ p` p?

No, in fact this is a very general phenomenon, called “linearity of expectation.”

Theorem (Linearity of Expectation). Consider an experiment with sample space S. Let
X,Y : S Ñ R be any random variables and let α, β P R be any constants. Then we have

ErαX ` βY s “ αErXs ` βErY s.

Remark: The study of expected value brings us very close to the subject called “linear algebra.”
What we are really proving here is that expected value is a “linear function.” ///

This is really hard to prove if we try to use the k P SX formula for expected value, but it’s
really easy if we use the s P S formula.

Proof: We just apply the definitions:

ErαX ` βY s “
ÿ

sPS

pαX ` βY qpsqP psq

“
ÿ

sPS

rαXpsq ` βY psqs ¨ P psq

“
ÿ

sPS

rαXpsqP psq ` βY psqP psqs

“
ÿ

sPS

αXpsqP psq `
ÿ

sPS

βY psqP psq

“ α
ÿ

sPS

XpsqP psq ` β
ÿ

sPS

Y psqP psq

“ αErXs ` βErY s.

///

WARNING: This theorem says that expected value “preserves” addition and scaling of
random variables. I want to emphasize, however, that expected value (usually) does not
preserve multiplication:

ErXY s ‰ ErXs ¨ ErY s !
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In particular (when Y “ X) this tells us that

ErX2s ‰ ErXs2.

This will be important below. ///

Linearity of expectation is an abstract concept, but it has powerful applications.

Application (Expectation of a Binomial). Consider a coin with P pHq “ p. Flip the coin
n times and let X be the number of heads that you get. We know that

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k.

On the other hand, we can express the binomial random variable X as a sum of simpler
random variables. For each i “ 1, 2, . . . , n let us define

Xi “

#

1 if the ith flip is H

0 if the ith flip is T

Observe that each Xi has two possible values SXi “ t0, 1u with pmf given by

P pXi “ 0q “ 1´ p and P pXi “ 1q “ p.

Hence we can compute the expected value of Xi using the k P SXi formula:

ErXis “ 0 ¨ P pXi “ 0q ` 1 ¨ P pXi “ 1q “ 0 ¨ p1´ pq ` 1 ¨ p “ p.

What does this mean? Another way to phrase the definition of Xi is “the number of heads
that we get on the ith flip.” Thus the formula ErXis “ p says that (on average) we expect to
get p heads on the ith flip. That sounds reasonable, I guess. Then since Xi is the number of
heads on the ith flip, the sum of the Xi gives the total number of heads:

(total # heads) “
n
ÿ

i“1

(# heads on the ith flip)

X “ X1 `X2 ` ¨ ¨ ¨ `Xn.

Finally, we can use the linearity of expectation to compute the expected number of heads:

ErXs “ ErX1 `X2 ` ¨ ¨ ¨ `Xns

“ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns

“ p` p` ¨ ¨ ¨ ` p
loooooooomoooooooon

n times

“ np.
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That was pretty slick, right? On HW3 you will give a much uglier proof that ErXs “ np. ///

And we’re not done yet. Pretty soon we’ll develop a Calculus trick that will allow us to
compute all of the so-called moments of X, i.e., the expected values ErXks for k “ 1, 2, 3, . . ..
Taken together, the infinite sequence of moments

ErXs, ErX2s, ErX3s, . . .

tells us everything we want to know about the random variable X. In the next section we’ll
discuss the meaning of the second moment ErX2s.

We have seen that the expected value ErXs gives us useful information about the random
variable X. But it doesn’t tell us everything.

Example: Consider the following two random variables.

• Roll a fair 6-sided die with sides labeled 1, 2, 3, 4, 5, 6 and let X be the number that
shows up.

• Roll a fair 6-sided die with sides labeled 3, 3, 3, 4, 4, 4 and let Y be the number that
shows up.

To compute the expected value of X we note that SX “ t1, 2, 3, 4, 5, 6u with P pX “ kq “ 1{6
for all k P SX . Hence

ErXs “ 1 ¨
1

6
` 2 ¨

1

6
` 3 ¨

1

6
` 4 ¨

1

6
` 5 ¨

1

6
` 6 ¨

1

6
“

21

6
“ 3.5.

To compute the expected value of Y we note that SY “ t3, 4u with P pX “ 3q “ P pX “ 4q “
3{6 “ 1{2. Hence

ErY s “ 3 ¨ P pY “ 3q ` 4 ¨ P pY “ 4q “ 3 ¨
1

2
` 4 ¨

1

2
“

7

2
“ 3.5.

We conclude that X and Y have the same expected value. But they certainly do not have
the same distribution, as we can see in the following line graphs:
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We see that both distributions are centered at 3.5, but the distribution of X is more “spread
out” than the distribution of Y . We would like to attach some number to each distribution
to give a measure of its “spread,” and to verify quantitatively that

spreadpXq ą spreadpY q.

How can we do this?

Idea of “Spread.” Let X be a random variable with expected value µ :“ ErXs (also known
as the mean of X). We want to answer the question:

On average, how far away is X from its mean µ?

///

The most obvious way to do this is to compute the expected value of the difference X ´ µ.
We use the linearity of expectation and the fact that Erµs “ µ (because µ is a constant, i.e.,
it’s not random) to get

ErX ´ µs “ ErXs ´ Erµs “ ErXs ´ µ “ µ´ µ “ 0.

Oops. Maybe we should have seen that coming. Since X spends about half of its time on the
right of µ and half of its time on the left of µ, it seems that the differences canel out.

We can fix this by taking the distance between X and µ, which is the absolute value of the
difference: |X ´ µ|. We will call the expected value of this distance the spread 7 of X:

spreadpXq “ E r|X ´ µ|s .

7Warning: This is not standard terminology.
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To see if this idea is reasonable, let’s compute the spread of the random variables X and Y
from above. Unfortunately, the function |X ´ µ| is a bit complicated so we will have to go
back to the explicit formula:

E r|X ´ µ|s “
ÿ

sPS

|Xpsq ´ µ| ¨ P psq.

To compute the spread of X, we form the following table:

s face 1 face 2 face 3 face 4 face 5 face 6

X 1 2 3 4 5 6

µ 3.5 3.5 3.5 3.5 3.5 3.5

|X ´ µ| 2.5 1.5 0.5 0.5 1.5 2.5

P 1{6 1{6 1{6 1{6 1{6 1{6

And then we apply the formula

E r|X ´ µ|s “ p2.5q
1

6
` p1.5q

1

6
` p0.5q

1

6
` p0.5q

1

6
` p1.5q

1

6
` p2.5q

1

6
“

9

6
“ 1.5.

We conclude that, on average, the random variable X has a distance of 1.5 from its mean. To
compute the spread of Y , we form the following table:

s face 1 face 2 face 3 face 4 face 5 face 6

Y 3 3 3 4 4 4

µ 3.5 3.5 3.5 3.5 3.5 3.5

|Y ´ µ| 0.5 0.5 0.5 0.5 0.5 0.5

P 1{6 1{6 1{6 1{6 1{6 1{6

And then we apply the formula

E r|Y ´ µ|s “ p0.5q
1

6
` p0.5q

1

6
` p0.5q

1

6
` p0.5q

1

6
` p0.5q

1

6
` p0.5q

1

6
“

3

6
“ 0.5.

We conclude that, on average, the random variable Y has a distance of 0.5 from its mean.
This confirms our earlier intuition that

1.5 “ spreadpXq ą spreadpY q “ 0.5.

///

Now the bad news. Even though our definition of “spread” is very reasonable, this definition
is not commonly used in probability and statistics. The main reason we don’t use it is because
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the absolute value function is not very algebraic. To make the algebra work out smoothly we
prefer to work with the square of the distance between X and µ:

(distance between X and µ)2 “ |X ´ µ|2 “ pX ´ µq2.

Notice that when we do this the absolute value signs disappear.

Definition of Variance and Standard Deviation. Let X be a random variable with mean
µ “ ErXs. We define the variance as the expected value of the squared distance between X
and µ:

VarpXq “ σ2 “ E
“

pX ´ µq2
‰

.

Then since we feel remorse about squaring the distance, we try to correct the situation by
defining the standard deviation σ as the square root of the variance:

σ “
a

VarpXq “
a

E rpX ´ µq2s.

///

Remark: The standard deviation of X is not the same as the spread that we defined earlier.
In general we have the inequality

E r|X ´ µ|s “ spreadpXq ď σ.

However, the standard deviation has certain theoretical advantages that we will see later.

To finish this section, let’s compute the standard deviations of X and Y . For now we’ll use
the explicit formula

E
“

pX ´ µq2
‰

“
ÿ

sPS

pXpsq ´ µq2P psq,

but later we’ll see that there are tricks. Here’s the table for X:

s face 1 face 2 face 3 face 4 face 5 face 6

X 1 2 3 4 5 6

µ 3.5 3.5 3.5 3.5 3.5 3.5

pX ´ µq2 6.25 2.25 0.25 0.25 2.25 6.25

P 1{6 1{6 1{6 1{6 1{6 1{6

Thus we have

σ2X “ E
“

pX ´ µq2
‰

“ p6.25q
1

6
`p2.25q

1

6
`p0.25q

1

6
`p0.25q

1

6
`p2.25q

1

6
`p6.25q

1

6
“

17.5

6
« 2.92.
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and σX “
b

σ2X « 1.71. And here’s the table for Y :

s face 1 face 2 face 3 face 4 face 5 face 6

Y 3 3 3 4 4 4

µ 3.5 3.5 3.5 3.5 3.5 3.5

pY ´ µq2 0.25 0.25 0.25 0.25 0.25 0.25

P 1{6 1{6 1{6 1{6 1{6 1{6

Thus we have

σ2Y “ E
“

pY ´ µq2
‰

“ p0.25q
1

6
`p0.25q

1

6
`p0.25q

1

6
`p0.25q

1

6
`p0.25q

1

6
`p0.25q

1.5

6
“

1.5

6
“ 0.25.

and σX “
b

σ2X “ 0.5. You should observe that

1.5 “ spreadpXq ď σX « 1.71,

0.5 “ spreadpY q ď σY “ 0.5.

But we still have
1.71 « σX ą σY “ 0.5,

so it seems that standard deviation is a reasonable measure of the spread of X and Y .

Oct 26

Let X be a random variable and recall our definition of the variance :

σ2 “ VarpXq “ ErpX ´ µq2s “
ÿ

k

pk ´ µq2P pX “ kq.

In other words, the variance is the expected value of the squared distance between X and
its mean µ. This is some measure of “how spread out” X is around its mean. The fact that
we use the squared distance instead of the plain distance is somewhat arbitrary, but it leads
to a nice mathematical theory. For example, we have the following nice trick.

Trick for Computing Variance: VarpXq “ ErX2s ´ ErXs2.

Proof: Let µ “ ErXs be the mean. Then we use the linearity of expectation and the fact
that µ is constant to compute

VarpXq “ ErpX ´ µq2s

“ ErX2 ´ 2µX ` µ2s
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“ ErX2s ´ 2µErXs ` Erµ2s

“ ErX2s ´ 2µ ¨ µ` µ2

“ ErX2s ´ µ2

“ ErX2s ´ ErXs2.

///

Remark: Since the squared distance pX ´ µq2 is always non-negative, its expected value
VarpXq “ ErpX ´ µq2s is also non-negative, and it follows from this that

VarpXq ě 0

ErX2s ´ ErXs2 ě 0

ErX2s ě ErXs2.

That might be useful later.

To illustrate these concepts, let X be a binomial random variable with n “ 2 and p “ 1{3.
That, is suppose we have a coin with P pHq “ 1{3 where we flip the coin twice and let X be
the number of heads that we get. As we already know, the expected number of heads is

ErXs “ np “ 2 ¨
1

3
“

2

3
.

Now let’s compute the variance in two different ways. Here is a table with all the information
we will need:

k 0 1 2

k2 0 1 4

µ 2{3 2{3 2{3

pk ´ µq2 4{9 1{9 16{9

P pX “ kq 4{9 4{9 1{9

Using the definition of variance gives

VarpXq “
ÿ

k

pk ´ µq2P pX “ kq

“ p0´ µq2P pX “ 0q ` p1´ µq2P pX “ 1q ` p2´ µq2P pX “ 2q

“
4

9
¨

4

9
`

1

9
¨

4

9
`

16

9
¨

1

9

“
16` 6` 16

81

“
36

81

“
4

9
.
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On the other hand, using the trick gives

VarpXq “ ErX2s ´ ErXs2

“

«

ÿ

k

k2P pX “ kq

ff

´ µ2

“

„

0 ¨
4

9
` 1 ¨

4

9
` 4 ¨

1

9



´

ˆ

2

3

˙2

“
8

9
´

4

9

“
4

9
.

Which method do you prefer? In either case, since the variance is σ2 “ 4{9 we conclude that
the standard deviation is σ “

a

4{9 “ 2{3.

Now let’s consider a general binomial random variable with pmf

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k.

We saw on HW3 and in class that the mean is µ “ ErXs “ np. It turns out that the variance
has a similarly nice formula:

σ2 “ VarpXq “ npp1´ pq.

But why? If we try to compute the variance from the definition we get a terrible formula

VarpXq “
ÿ

k

pk ´ npq2
ˆ

n

k

˙

pkp1´ pqn´k.

It’s possible to simplify this monster using algebraic manipulations, but from your experience
on HW3 you know that this will not be fun.

Here’s a better explanation: Suppose we flip a coin n times and let Xi be the number of heads
that we get on the ith flip, so that

Xi “

#

1 if the ith flip is H,

0 if the ith flip is T .

(This is our friend the Bernoulli random variable.) It is easy to compute the variance of Xi.
To do this, we recall that ErXis “ p and we compute that

ErX2
i s “

ÿ

k

k2P pXi “ kq “ 02P pXi “ 0q ` 12P pXi “ 1q “ 0p1´ pq ` 1p “ p.
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Thus we conclude that

VarpXiq “ ErX2
i s ´ ErXis

2 “ p´ p2 “ pp1´ pq.

Finally, we use the fact that a binomial random variable is a sum of Bernoullis:

X “ X1 `X2 ` ¨ ¨ ¨ `Xn

VarpXq “ VarpX1 `X2 ` ¨ ¨ ¨ `Xnq

“ VarpX1q `VarpX2q ` ¨ ¨ ¨ `VarpXnq (?)

“ pp1´ pq ` pp1´ pq ` ¨ ¨ ¨ ` pp1´ pq

“ npp1´ pq.

This computation is correct, but I still haven’t explained why the step (?) true.

Question: Why is it okay to replace the variance of the sum VarpX1` ¨ ¨ ¨ `Xnq with the sum
of the variances VarpX1q ` ¨ ¨ ¨ `VarpXnq ?

Answer: This only works because our random variables Xi and Xj are independent for all
i ‰ j.8 In general, it is not okay to replace the variance of a sum by the sum of the variances.
That is, unlike the expected value Er´s, the variance function Varp´q is not linear.

For general (i.e., non-independent) random variables X and Y we will have

VarpX ` Y q “ VarpXq `VarpY q ` some junk.

Let’s investigate what kind of junk this is. To keep track of the means we will use the notation

µX “ ErXs and µY “ ErY s.

Since the expected value is linear we have

ErX ` Y s “ ErXs ` ErY s “ µX ` µY .

Now we compute the variance of X ` Y directly from the definition:

VarpX ` Y q “ E
”

rpX ` Y q ´ pµX ` µY qs
2
ı

“ E
”

rpX ´ µXq ` pY ´ µY qs
2
ı

“ E
“

pX ´ µXq
2 ` pY ´ µY q

2 ` 2pX ´ µXqpY ´ µY q
‰

“ E
“

pX ´ µXq
2
‰

` E
“

pY ´ µY q
2
‰

` 2E rpX ´ µXqpY ´ µY qs

“ VarpXq `VarpY q ` 2E rpX ´ µXqpY ´ µY qs

8If i ‰ j, then the number of heads you get on the ith flip has no relation to the number of heads you get
on the jth flip. This is what we mean when we say that a coin has “no memory.”
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We don’t like to write this out every time so we give the junk a special name.

Definition of Covariance. Let X and Y be random variables with means µX “ ErXs and
µY “ ErY s. We define their covariance as

CovpX,Y q “ E rpX ´ µXqpY ´ µY qs .

Then the variance of the sum X ` Y is given by

VarpX ` Y q “ VarpXq `VarpY q ` 2 ¨ CovpX,Y q.

///

Remark: Observe that VarpXq “ CovpX,Xq.

The covariance CovpX,Y q is some measure of how “non-independent” or “entangled” the
random variables are. In particular, when X and Y are independent we will have

CovpX,Y q “ 0 and hence VarpX ` Y q “ VarpXq `VarpY q.

To be specific about this I must finally define the word “independent.”

Definition of Joint pmf and Independence. Let X and Y be random variables with
supports SX Ď R and SY Ď R. Then for all possible values k P SX and ` P SY we define

fXY pk, `q “ P pX “ k, Y “ `q

“ P pX “ k and Y “ `q

“ P p“X “ k”X “Y “ `”q.

The function fXY : SX ˆ SY Ñ R, which takes a pair of possible values pk, `q for X and Y
and spits out the probability of “X “ k and Y “ `” is called the joint pmf of X and Y .

The random variables X and Y are called independent if for all k P SX and ` P SY we have

fXY pk, `q “ fXpkqfY p`q

P pX “ k, Y “ `q “ P pX “ kqP pY “ `q.

In other words, X and Y are independent if their joint pmf fXY is the product of their marginal
pmfs fX and fY . ///

There are a lot of letters in that definition, so let’s see an example with some numbers.
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Example of Independence and Depencence. Consider a coin with P pHq “ 1{3. Flip the
coin twice and let

X “ “# heads on 1st flip,”

Y “ “# heads on 2nd flip,”

W “ “total # heads” “ X ` Y.

Our intuition is that X and Y are independent, but X and W are probably not. To see this
we will compute the joint pmfs. In general, we display the joint pmf fXY in a rectangular
table with the marginal pmfs fX and fY in the margins,9 as follows:

Here is the joint pmf for our specific X and Y :

Note that the marginal pmfs fX and fY are obtained by summing the entries in each row
and column, respectively. We observe that each of these is a Bernoulli pmf with p “ 1{3, as
expected. Observe also that each entry of the table fXY pk, `q is equal to the product of the

9This is the reason for the name “marginal.”
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marginal below, i.e., fXpkq, and the marginal to the right, i.e., fY p`q. This confirms that the
random variables X and Y are independent.

The joint pmf table tells us everything we could ever want to know about the joint distribution
of X and Y . For example, to compute P pX ď Y q we simply add the probabilies from the cells
corresponding to the event “X ď Y ” as in the following picture:

We conclude that

P pX ď Y q “
4

9
`

2

9
`

1

9
“

7

9
.

Now let’s move on to the joint distribution of X and W . Here is the pmf table:

Again, the marginal pmfs fX and fW are familiar to us, being a Bernoulli and a binomial,
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respectively.10 Now it is immediately clear that the random variables X and W are not
independent. To see this we only need to note, for example, that the entry P pX “ 0,W “

2q “ 0 is not equal to the product of the marginals P pX “ 0qP pW “ 2q “ p2{3qp1{9q. Because
of this, we expect that the covariance is not zero:

CovpX,W q ‰ 0.11

Let’s go ahead and compute CovpX,W q to be sure. There are many ways to compute covari-
ance. For extra practice with joint distributions I’ll use the formula

VarpX `W q “ VarpXq `VarpW q ` 2 ¨ CovpX,W q.

We already know that VarpXq “ pp1 ´ pq “ p1{3qp2{3q “ 2{9 and VarpW q “ npp1 ´ pq “
2p1{3qp2{3q “ 4{9, so it only remains to compute VarpX ` W q. To do this, we note that
X `W can take on values SX`W “ t0, 1, 2, 3u. I have circled the events “X `W “ k” for
each k P SX`W in the following picture:

By adding up the probabilities in each blob, we obtain the pmf of X `W :

k 0 1 2 3

P pX `W “ kq 4{9 2{9 2{9 1{9

This allows us to compute

ErX `W s “ 0 ¨ p4{9q ` 1 ¨ p2{9q ` 2 ¨ p2{9q ` 3 ¨ p1{9q “ 9{9 “ 1,

ErpX `W q2s “ 02 ¨ p4{9q ` 12 ¨ p2{9q ` 22 ¨ p2{9q ` 32 ¨ p1{9q “ 19{9,

10In fact, we already computed the distribution fW in today’s lecture.
11It can sometimes happen by accident that CovpX,Y q “ 0 for non-independent random variables X and Y ,

but this is quite rare. On ther other hand, if X and Y are independent, it is guaranteed that CovpX,Y q “ 0.
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and hence

VarpX `W q “ ErpX `W q2s ´ ErX `W s2 “
19

9
´ 12 “

10

9
.

That certainly was good practice. Now let me mention an easier way to compute VarpX`W q.
If X is any random variable and α P R is any constant then it is easy to check that

VarpαXq “ α2VarpXq.

Proof: We use the linearity of expectation:

VarpαXq “ ErpαXq2s ´ ErαXs2

“ Erα2X2s ´ pαErXsq2

“ α2ErX2s ´ α2ErXs2

“ α2
`

ErX2s ´ ErXs2
˘

“ α2VarpXq.

///

Applying this to our problem, we can use the fact that W “ X ` Y and that X and Y are
independent to get

VarpX `W q “ VarpX `X ` Y q

“ Varp2X ` Y q

“ Varp2Xq `VarpY q

“ 22 ¨VarpXq `VarpY q

“ 4 ¨
2

9
`

2

9

“
10

9
.

Finally, we conclude that

VarpX `W q “ VarpXq `VarpW q ` 2 ¨ CovpX,W q

10{9 “ 2{9` 4{9` 2 ¨ CovpX,W q

4{9 “ 2 ¨ CovpX,W q

2{9 “ CovpX,W q.

This confirms once again that X and W are not independent. In fact, this is quite reasonable
since the total number of heads (i.e., W ) depends in some way on the number of heads that
we get on the 1st flip (i.e., X). The covariance CovpX,W q “ 2{9 just attaches a number to
our intuition.
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Oct 31 (I wore a skull shirt under my other shirt)

Let’s recap.

Consider a fixed experiment with sample space S. Then given any two random variables
X,Y : S Ñ R and any two constants α, β P R we have

ErαX ` βY s “ αErXs ` βErY s.

In short, we say that “expectation is a linear function.” If µX “ ErXs is the expected value
of X then we defined the variance and showed that

σ2X “ VarpXq “ ErpX ´ µXq
2s “ ErX2s ´ µ2X “ ErX2s ´ ErXs2.

Then we made the following observation:

Unlike the expected value Er´s, the variance Varp´q is not a linear function.

So what is it? For any random variables X,Y : S Ñ R we did a computation to show that

VarpX ` Y q “ VarpXq `VarpY q ` 2 ¨ CovpX,Y q,

where the covariance is defined by

CovpX,Y q “ ErpX ´ µXqpY ´ µY qs.

This is a number that is supposed to measure the “non-independence” or the “entanglement”
of X and Y . If X and Y are independent (technically: their joint pmf is the product of
marginal pmfs) then we will have CovpX,Y q “ 0 and hence VarpX ` Y q “ VarpXq `VarpY q.

Last time we computed an example of covariance using brute force. Today we’ll use a nice
trick.

Trick for Computing Covariance. Consider any random variables X,Y with expected
values µX “ ErXs and µY “ ErY s. Then we have

CovpX,Y q “ ErXY s ´ µXµY “ ErXY s ´ ErXs ¨ ErY s.

///

Remark: Before seeing the proof, you should observe that this is just a generalization of our
earlier trick for computing the variance. Indeed, by setting Y “ X we obtain

VarpXq “ CovpX,Xq “ ErX ¨Xs ´ ErXs ¨ ErXs “ ErX2s ´ ErXs2.

The proof will be pretty much the same.
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Proof: We will use the linearity of expectation and the fact that µX and µY are constants.
From the definition of covariance we have

CovpX,Y q “ ErpX ´ µXqpY ´ µY qs

“ ErXY ´ µXY ´ µYX ` µXµY s

“ ErXY s ´ ErµXY s ´ ErµYXs ` ErµXµY s

“ ErXY s ´ µXErY s ´ µYErXs ` µXµY

“ ErXY s ´ µXµY ´����µY µX `����µXµY

“ ErXY s ´ µXµY

“ ErXY s ´ ErXs ¨ ErY s.

///

Let’s revisit the example from last time, using our new trick formula.

Example Continued from Oct 26. Consider a coin with P pHq “ 1{3. Flip the coin twice
and consider the following random variables:

X “ “# heads on 1st flip,”

Y “ “# heads on 2nd flip,”

W “ “total # heads” “ X ` Y.

To examine the relationship between X and W we only need to compute the expectations

ErXs, ErX2s, ErW s, ErW 2s, ErXW s.

And these are easy to compute from the following table:

s TT TH HT HH

P 4{9 2{9 2{9 1{9
X 0 0 1 1

X2 0 0 1 1
W 0 1 1 2

W 2 0 1 1 4
XW 0 0 1 2

ÝÑ ErXs “ 1p2{9q ` 1p1{9q “ 3{9,

ÝÑ ErX2s “ 1p2{9q ` 1p1{9q “ 3{9,
ÝÑ ErW s “ 1p2{9q ` 1p2{9q ` 2p1{9q “ 6{9,

ÝÑ ErW 2s “ 1p2{9q ` 1p2{9q ` 4p1{9q “ 8{9,
ÝÑ ErXW s “ 1p2{9q ` 2p1{9q “ 4{9.

We use the expected values to compute the variances

VarpXq “ ErX2s ´ ErXs2 “ p3{9q ´ p3{9q2 “ 2{9,

VarpW q “ ErW 2s ´ ErW s2 “ p8{9q ´ p6{9q2 “ 4{9,

and the covariance

CovpX,W q “ ErXW s ´ ErXs ¨ ErW s “ p4{9q ´ p3{9qp6{9q “ 2{9.
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That was easier than last time, right? ///

For posterity, let me record a few last properties of variance.

Properties of Variance.

• Let α P R be any constant. Then we have Varpαq “ 0.

Proof: We use the fact that Erαs “ α to obtain

Varpαq “ Erα2s ´ Erαs2 “ α2 ´ pαq2 “ 0.

The idea behind this is that a constant random variable has zero spread, i.e., it is
totally concentrated at its center of mass:

• Let α P R be constant and let X be any random variable. Then VarpX ` αq “ VarpXq.

Proof: We use Erαs “ α and the linearity of E to obtain

VarpX ` αq “ ErpX ` αq2s ´ ErX ` αs2

“ ErX2 ` 2αX ` α2s ´ pErXs ` αq2

“

´

ErX2s `�����2αErXs `��α
2
¯

´

´

ErXs2 `�����2αErXs `��α
2
¯

“ ErX2s ´ ErXs2

“ VarpXq.

The idea behind this is that shifting a random variable to the left or right doesn’t change
the spread:
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• For any constant α P R and random variable X we have VarpαXq “ α2VarpXq.

Proof: We use the fact that ErαXs “ αErXs to get

VarpαXq “ ErpαXq2s ´ ErαXs2

“ Erα2X2s ´ pαErXsq2

“ α2ErX2s ´ α2ErXs2

“ α2
`

ErX2s ´ ErXs2
˘

“ α2VarpXq.

I don’t really know what this means, but there’s no arguing with the math.

///

The notion of “covariance” is constantly used in applied statistics, but you are more likely to
see it in a modified form called “correlation.” Recall that the variance of a random variable
(i.e., the covariance of a random variable with itself) is always non-negative:

CovpX,Xq “ VarpXq “ σ2X ě 0.

However, the covariance of two random variables can sometimes be negative. The most we
can say about the covariance in general is the following inequality.

Cauchy-Schwarz Inequality. For all random variables X and Y we have

CovpX,Y q2 ď VarpXqVarpY q “ σ2Xσ
2
Y .

///
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I won’t bother to prove this, but I do want to note an important consequence. By dividing
both sides of the inequality by the positive number σXσY we obtain

CovpX,Y q2 ď σ2Xσ
2
Y

CovpX,Y q2

σ2Xσ
2
Y

ď 1

ˆ

CovpX,Y q

σXσY

˙2

ď 1

This implies that the number CovpX,Y q{pσXσY q, which could possibly be negative, satisfies

´1 ď
CovpX,Y q

σXσY
ď `1.

Definition of Correlation. For any random variables X and Y we define the correlation
(also called the correlation coefficient) by the formula

ρXY “
CovpX,Y q

σXσY
.

///

The following picture from Wikipedia will help us to interpret the number ρXY :

Consider a fixed experiment with sample space S and let X,Y : S Ñ R be any two random
variables. Suppose that we run the experiment many times and for each run we record the
values of X and Y . This will give us a sequence of ordered pairs

px1, y1q, px2, y2q, px3, y3q, . . .

If we plot these as points in the px, yq-plane then we will obtain some kind of cloud of dust.
The correlation ρXY is supposed to measure how close our cloud is to being a straight line.
For example, if ρXY “ 0.6 then we might obtain a picture like this:
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A value of ρXY close to 1 means that our cloud of dust is close to a line of positive slope, and
a value of ρXY close to ´1 means that our cloud of dust is close to a line of negative slope.12

This is demonstrated by the first two rows in the Wikipedia picture.

The third row of the picture is a warning. It says that there are certain interesting kinds of
relationships between X and Y that cannot be detected by the number ρXY . This is closely
related to the fact that non-independent random variables might “accidentally” have zero
covariance. That is, we have

X,Y independent ùñ CovpX,Y q “ 0

but
CovpX,Y q “ 0 ùñ X,Y independent.

To detect more subtle relationships between and X and Y we will need more subtle tools than
just the covariance and correlation.

We will end this section of the course with a Calculus trick. We might not use it much in this
course but it will become very important if you go on to MTH 524/525.

For most random variables X, we can learn anything that we want about the distribution of
X by studying the sequence of moments

ErXs, ErX2s, ErX3s, . . . .

12Vertical and horizontal lines correspond to the cases σX “ 0 and σY “ 0, respectively. In either case we
see that the correlation ρXY is not defined because we can’t divide by zero.

34



For example, we have seen that the first and second moments ErXs and ErX2s tell us about
the center of mass and the spread of X. There is a convenient way to organize this infinite
sequence by using Calculus.

Definition of Moment Generating Function (mgf). Let X be a random variable and
let t P R be a constant. Then we define the moment generating function by the formula

MXptq “ EretXs.

///

Why would we do this? Well, you may remember from Calculus that the exponential function
has the following infinite series expansion:

etX “ 1` tX `
t2

2!
X2 `

t3

3!
X3 ` ¨ ¨ ¨

Let’s assume that this infinite series converges. Then by applying Er´s to both sides and
using the fact that t is constant we obtain

EretXs “ 1` tErXs `
t2

2!
ErX2s `

t3

3!
ErX3s ` ¨ ¨ ¨ .

In other words, the moment generating function MXptq is a power series in t whose coefficients
are basically the moments of the random variable X. Supposing that we have a nice formula
for the mgf, it becomes easy13 to compute the moments.

Theorem (Moment Generating Function). Let X be a random variable with moment
generating function MXptq. Then for any integer r ě 1, the rth moment of X is given by the
rth derivative of MXptq evaluated at t “ 0:

dr

dtr
MXptq

ˇ

ˇ

ˇ

ˇ

t“0

“ ErXrs.

Proof: Let’s assume that we can bring derivatives inside the expected value. Then we have

dr

dtr
MXptq “

dr

dtr
EretXs “ E

„

dr

dtr
etX



“ ErXretXs

and hence
dr

dtr
MXptq

ˇ

ˇ

ˇ

ˇ

t“0

“ ErXretXs
ˇ

ˇ

t“0
“ ErXre0s “ ErXrs.

///

13for a computer
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You should just think of this as another trick for computing moments. Sometimes it works,
sometimes it doesn’t. It works really well for the binomial distribution.

Application (mgf of a Binomial Random Variable). Let X be a binomial random
variable with pmf

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k.

Then from the binomial theorem and the definition of mgf we have

MXptq “ EretXs “
ÿ

k

etk
ˆ

n

k

˙

pkp1´ pqn´k

“
ÿ

k

ˆ

n

k

˙

`

etp
˘k
p1´ pqn´k

“ petp` 1´ pqn.

To compute the first moment we first differentiate:

d

dt
MXptq “

d

dt
petp` 1´ pqn “ npetp` 1´ pqn´1etp

And then we evaluate at t “ 0 to obtain

ErXs “
d

dt
MXptq

ˇ

ˇ

ˇ

ˇ

t“0

“ npe0p` 1´ pqn´1e0p “ np1qn´11p “ np.

To compute the second moment we differentiate again (using the product rule):

d2

dt2
MXptq “

d

dt

“

npetp` 1´ pqn´1etp
‰

“ etp ¨
d

dt

“

npetp` 1´ pqn´1
‰

` npetp` 1´ pqn´1 ¨
d

dt

“

etp
‰

“ etpnpn´ 1qpetp` 1´ pqn´2etp` npetp` 1´ pqn´1etp

And then we evaluate at t “ 0 to obtain

ErX2s “
d2

dt2
MXptq

ˇ

ˇ

ˇ

ˇ

t“0

“ 1pnpn´ 1qp1qn´21p` np1qn´11p “ npn´ 1qp2 ` np.

Finally, we conclude that

VarpXq “ ErX2s ´ ErXs2 “
“

npn´ 1qp2 ` np
‰

´ pnpq2

“ npn´ 1qp2 ` np´ n2p2

“���n2p2 ´ np2 ` np´���n2p2

“ np´ np2

“ npp1´ pq.
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I don’t consider that fun, nor do I think it’s the best way to compute the variance of a
binomial. But it works. The main advantage of the mgf technique is that it allows us “easy”
access to the higher moments. For example, my computer spit out the following information
in a milisecond:

ErX3s “ npp1´ 3p` 2p2 ` 3np´ 3np2 ` n2p2q.

I’m not really sure what that’s good for. ///

On second thought, I probably didn’t need to introduce the mgf at this moment in this course.
(I was following the advice of a fairly bad textbook.) Oh well. There are one or two problems
involving the mgf on HW4 and then you can forget about the concept until MTH 524/525.
Yes, this means that there will be no problems about moment generating functions on Exam2.

Nov 2

We discussed the solutions to HW4 and then I promised that I would create a list of top-
ics/formulas that you can use to study for Exam2. Here it is:

• Random Variable. Consider a fixed experiment with sample space S. A random
variable is any function

X : S Ñ R

that assigns a real number to each outcome of the experiment. Example: Flip a coin 3
times. The sample space is

S “ tTTT,HTT, THT, TTH,HHT,HTH, THH,HHHu.

Let X be “number of heads squared minus number of tails.” Then we have

s P S TTT HTT THT TTH HHT HTH THH HHH

Xpsq ´3 ´1 ´1 ´1 3 3 3 9

The support of X is the set of possible values SX Ď R that X can take. In our example,
SX “ t´3,´1, 3, 9u.

• PMF. The probability mass function of a random variableX is the function fX : SX Ñ R
defined by

fXpkq “ P pX “ kq.

We can express it with a table or (sometimes) with a formula. If the coin in our example
is fair them the pmf of our random variable X is

k ´3 ´1 3 9

P pX “ kq 1{8 3{8 3{8 1{8
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More generally, if the coin satisfies P pHq “ p then our pmf becomes

k ´3 ´1 3 9

P pX “ kq p1´ pq3 3pp1´ pq2 3p2p1´ pq p3

• Expected Value. We define the expected value or mean of a random variable X by the
following two equivalent14 formulas:

µX “ ErXs “
ÿ

sPS

XpsqP psq “
ÿ

kPSX

kP pX “ kq.

For our example random variable X with a fair coin we compute

ErXs “
ÿ

k

kP pX “ kq “ ´3 ¨
1

8
´ 1 ¨

3

8
` 3 ¨

3

8
` 9 ¨

1

8
“

12

8
“ 1.5.

Meaning 1: If we view the pmf as a distribution of “point masses” on a line, then the
expected value is the “center of mass”:

Meaning 2: If we perform the experiment many times and compute the average value of
X, we expect to get 1.5.

• Linearity of Expectation. Let X,Y : S Ñ R be random variables and let α, β P R be
constants. Then

Erαs “ α,

ErαXs “ αErXs,

ErX ` Y s “ ErXs ` ErY s,

ErαX ` βY s “ αErXs ` βErY s.

We say that the function Er´s is linear.

14You do not need to prove that they are equivalent.

38



• Variance and Standard Deviation. We define the variance as the expected value of
pX ´ µXq

2, i.e., the square of the distance between X and its mean:

VarpXq “ ErpX ´ µXq
2s.

Using the linearity of Er´s we can also show that

VarpXq “ ErX2s ´ µ2X “ ErX2s ´ ErXs2.

We define the standard deviation as the non-negative square root of the variance:

σX “
a

VarpXq.

This makes sense because the variance is always non-negative. In our example we have

k ´3 ´1 3 9

k2 9 1 9 81

P pX “ kq 1{8 3{8 3{8 1{8

and hence

ErX2s “ 9 ¨
1

8
` 1 ¨

3

8
` 9 ¨

3

8
` 81 ¨

1

8
“

12

8
“ 15,

VarpXq “ ErX2s ´ ErXs2 “ 15´ p1.5q2 “ 12.75,

σX “
?

12.75 « 3.57.

I added this information to the picture:

• Basic Properties of Variance. For X : S Ñ R and α P X we have

Varpαq “ 0,

VarpX ` αq “ VarpXq,

VarpαXq “ α2VarpXq.
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• Covariance and Correlation. The function of Varp´q is not linear. Let X,Y : S Ñ
R be random variables. Then in general we have

VarpX ` Y q “ VarpXq `VarpY q ` 2 ¨ CovpX,Y q

where the covariance is defined by

CovpX,Y q “ ErpX ´ µXqpY ´ µY qs “ ErXY s ´ µXµY “ ErXY s ´ ErXs ¨ ErY s.

We observe that VarpXq “ CovpX,Xq. Unlike the variance, however, the covariance
may be negative. The most we can say in general is that

CovpX,Y q2 ď σ2Xσ
2
Y .

This implies that the correlation ρXY “ CovpX,Y q{pσXσY q is between ´1 and `1:

´1 ď
CovpX,Y q

σXσY
ď `1.

• Joint PMF and Independence. Let X,Y : S Ñ R be random variables. For all
k P SX and ` P SY we define the function

fXY pk, `q “ P pX “ k, Y “ `q “ P pX “ k and Y “ `q,

which is called the joint pmf of X and Y . We can recover the marginal pmfs of X and
Y by summing:

P pX “ kq “
ř

` P pX “ k, Y “ `q
fXpkq “

ř

` fXY pk, `q
and

P pY “ `q “
ř

k P pX “ k, Y “ `q
fY p`q “

ř

k fXY pk, `q

Sometimes the pmfs have formulas, sometimes not. We like to display the joint and
marginal pmfs with a table:
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We say that X and Y are independent if for all values of k and ` we have

fXY pk, `q “ fXpkqfY p`q

P pX “ k, Y “ `q “ P pX “ kqP pY “ `q.

If there is even one cell of the table where this doesn’t happen, we say that X and Y are
dependent. If X and Y are independent then we have CovpX,Y q “ 0, which implies

ErXY s “ ErXs ¨ ErY s and VarpX ` Y q “ VarpXq `VarpY q.

For dependent X and Y these formulas may be false.

Statisticians have a small collection of random variables that they like to use. (Just look
inside the cover of the textbook.) Here are the ones that we know.

• Bernoulli RV. Flip a coin and let X “ 1 if you get heads and X “ 0 if you get tails.
Assuming that P pHq “ p we get the following pmf:

k 0 1

P pX “ kq 1´ p p

Some people express this pmf as a formula: P pX “ kq “
`

1
k

˘

pkp1 ´ pq1´k. But I think
that’s kind of silly. We can easily compute the mean and variance:

ErXs “ 0p1´ pq ` 1p “ p,

ErX2s “ 02p1´ pq ` 12p “ p,

VarpXq “ ErX2s ´ ErXs2 “ p2 ´ p “ pp1´ pq.

• Binomial RV. Flip a coin n times and let X be the number of heads that you get. This
pmf has a famous formula:

P pX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k.

There are various ways to compute the mean and variance of X, some of which are quite
ugly. Here’s a nice way: Let Xi be the number of heads that you get on the i-th flip,
which is a Bernoulli random variable. Then we have

X “ X1 `X2 ` ¨ ¨ ¨ `Xn

ErXs “ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns

“ p` p` ¨ ¨ ¨ ` p

“ np,

and since the coin flips are independent we have

X “ X1 `X2 ` ¨ ¨ ¨ `Xn
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VarpXq “ VarpX1q `VarpX2q ` ¨ ¨ ¨ `VarpXnq

“ pp1´ pq ` pp1´ pq ` ¨ ¨ ¨ ` pp1´ pq

“ npp1´ pq.

• Geometric RV. Consider a coin with P pHq “ p and P pT q “ q. Start flipping the coin
and let X be the number of flips until you see H. If X “ k, i.e., if H occurs for the first
time on the k-th flip, then our sequence of flips must be TT ¨ ¨ ¨TH. Thus,

P pX “ kq “ P pTT ¨ ¨ ¨THq

“ P pT qP pT q ¨ ¨ ¨P pT qP pHq

“ qq ¨ ¨ ¨ qp

“ qk´1p.

The mean and variance are tricky to compute,15 but here they are:

ErXs “
1

p
and VarpXq “

1´ p

p2
.

To do anything with the geometric random variable you must remember the geometric
series from Calculus:

1` q ` q2 ` ¨ ¨ ¨ “
1

1´ q
“

1

p
.

Then, for example, we can show for any non-negative integer ` that

P pX ą `q “
8
ÿ

k“``1

P pX “ kq “
8
ÿ

k“``1

qk´1p

“ q`p` q``1p` q``2p` ¨ ¨ ¨

“ q`p ¨
“

1` q ` q2 ` ¨ ¨ ¨
‰

“ q`p ¨
1

p

“ q`.

This implies that P pX ą 0q “ q0 “ 1, as it should be.

• Hypergeometric RV. Everything so far has been based on a sequence of independent
“coin flips.” The hypergeometric random variable, on the other hand, is based on a
sequence of non-independent trials.

Consider a bowl containing B blue balls and R red balls. Suppose you reach in and grab
n ordered balls. Define Xi “ 1 if the i-th ball is blue and Xi “ 0 if the i-th ball is red.
Let X “ X1 `X2 ` ¨ ¨ ¨ `Xn be the total number of blue balls that you get.

15One could use the moment generating function, but moment generating functions are not on Exam2.
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Each Xi is a Bernoulli random variable with P pXi “ 1q “ B{pR`Bq so we obtain

X “ X1 `X2 ` ¨ ¨ ¨ `Xn

ErXs “ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns

“
B

B `R
`

B

B `R
` ¨ ¨ ¨ `

B

B `R

“
nB

B `R
.

However, these Xi are not independent. (For example, if the 1st ball is blue, this
decreases the chance that the 2nd ball is blue.) To compute the pmf it is easiest to
consider the n balls as unordered.16 Then every collection of n unordered balls is equally
likely, so we have

P pX “ kq “
(# collections with k blue balls)

(total # collections)
“

`

B
k

˘`

R
n´k

˘

`

B`R
n

˘ .

The variance VarpXq and covariances CovpXi, Xjq are tricky so we won’t discuss them.

• Worked Example of Covariance. If X and Y are independent then we always have
CovpX,Y q “ 0, but it doesn’t work the other way around. Here is a strange example of
dependent random variables X,Y such that CovpX,Y q “ 0.

Consider the following joint pmf table:

We observe that X and Y are not independent because, for example, the joint
probability P pX “ ´1, Y “ ´1q “ 0 is not equal to the product of the marginal
probabilities:P pX “ ´1qP pY “ ´1q “ p1{4qp1{2q “ 1{8 ‰ 0. We will show, however,
that X and Y are “uncorrelated,” i.e., that CovpX,Y q “ ρXY “ 0.

To do this we will use the formula CovpX,Y q “ ErXY s ´ErXs ¨ErY s. First, note that

ErXs “ p´1qp1{4q ` p0qp1{2q ` p1qp1{4q “ 0,

16We can leave them ordered, but this makes the counting problem harder.
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ErY s “ p´1qp1{2q ` p0qp0q ` p1qp1{2q “ 0.

Now define the random variable Z “ XY and observe that its support is SZ “ t´1, 0, 1u.
We have circled the events “Z “ ´1,” “Z “ 0” and “Z “ 1” in the following picture:

By adding the probabilities inside each blob we obtain the pmf of Z:

k ´1 0 1

P pZ “ kq 1{4 1{2 1{4

We conclude that

ErXY s “ ErZs “ p´1qp1{4q ` p0qp1{2q ` p1qp1{4q “ 0

and hence
CovpX,Y q “ ErXY s ´ ErXs ¨ ErY s “ 0´ 0 ¨ 0 “ 0.

Warning: This was a carefully chosen example. It’s actually pretty difficult to find
uncorrelated random variables that are not independent.

///
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