
MTH 224: Probability and Statistics Fall 2017
Course Notes 1 Drew Armstrong

Aug 22 and Aug 24

The art of statistics is based on the experimental science of probability. Probability, in turn,
is expressed in the language of mathematical physics. Indeed, the first historical application
of statistics was to problems of astronomy. The fundamental analogy of the subject is that

probability « mass.

Prior to 1650, probability was not regarded as a quantitative subject. The idea that one
could do numerical computations to predict events in the future was not widely accepted.
The modern subject was launched when a French nobleman known as the Chevalier de Méré1

enlisted the help of prominent French mathematicians to solve some problems related to
gambling and games of chance. Here is one of the problems that the Chevalier proposed.

Chevalier de Méré’s Problem. Consider the following two events:

(1) Getting at least one “six” in 4 rolls of a fair six-sided die.

(2) Getting at least one “double six” in 24 rolls of a pair of fair six-sided dice.

From his gambling experience the Chevalier observed that event (1) was more likely than event
(2), but he couldn’t find a satisfying mathematical explanation. ///

The mathematician Blaise Pascal (1623–1662) found a solution to this and other similar prob-
lems, and through his correspondence with Pierre de Fermat (1607–1665) the two mathemati-
cians developed the first mathematical framework for the rigorous study of probability. To
understand the Chevalier’s problem we will first consider a simpler problem that was also
solved by Pascal.

Pascal’s Problem. A two-sided coin (we call the sides “heads” and “tails”) is flipped n
times. What is the probability that “heads” shows up exactly k times? ///

For example, let n “ 4 and k “ 2. Let X denote the number of heads that occur in a given
run of the experiment (this X is an example of a random variable). Now we are looking for
the probability of the event “X “ 2.” In other words, we wan to find a number that in some
sense measures how likely this event is to occur:

P pX “ 2q “ ?

1His real name was Antoine Gombaud (1607–1687). As well as being a nobleman, he was also a writer and
intellectual on the Salon circuit. In his written dialogues he adopted the title of Chevalier (Knight) for the
character that expressed his own views, and his friends later called him by that name.
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Since the outcome of the experiment is unknown to us (indeed, it is random), the only thing
we can reasonably do is to enumerate all of the possible outcomes. If we denote “heads” by
H and “tails” by T then we can list the possible outcomes as in the following table:

X “ 0 TTTT

X “ 1 HTTT, THTT, TTHT, TTTH

X “ 2 HHTT,HTHT,HTTH, THHT, THTH, TTHH

X “ 3 THHH,HTHH,HHTH,HHHT

X “ 4 HHHH

We observe that there are 16 possible outcomes, which is not a surprise because 16 “ 24.
Indeed, since each coin flip has two possible outcomes we can simply multiply the possibilities:

(total # outcomes) “ (# flip 1 outcomes)ˆ ¨ ¨ ¨ ˆ (# flip 4 outcomes)

“ 2ˆ 2ˆ 2ˆ 2

“ 24

“ 16.

If the coin is “fair” we will assume that each of these 16 outcomes is equally likely to occur. In
such a situation, Fermat and Pascal decided that the correct way to measure the probability of
an event E is to count the number of ways that E can happen. That is, for a given experiment
with equally likely outcomes we will define the probability of E as

P pEq “
# ways that E can happen

total # of possible outcomes
.

In more modern terms, we let S denote the set of all possible outcomes (called the sample
space of the experiment). Then an event is any subset E Ď S, which is just the subcollection
of the outcomes that we care about. Then we can express the Fermat-Pascal definition of
probabiliy as follows.

First Definition of Probability. Let S be a finite sample space. If each of the possible
outcomes is equally likely then we define the probability of an event E Ď S as the ratio

P pEq “
#E

#S

where #E and #S denote the number of elements in the sets E and S, respectively. ///

In our example we can express the sample space as
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S “ tTTTT,HTTT, THTT, TTHT, TTTH,HHTT,HTHT,HTTH,

THHT, THTH, TTHH, THHH,HTHH,HHTH,HHHT,HHHHu

and the event E “ “X “ 2” corresponds to the subset

E “ tHHTT,HTHT,HTTH, THHT, THTH, TTHHu,

so that #S “ 16 and #E “ 6. Thus the probability of E is

P p“2 heads in 4 coin flips”q “ P pX “ 2q

“ P pEq

“
#E

#S

“
# ways to get 2 heads

total # ways to flip 4 coins

“
6

16
.

We have now assigned the number 6{16, or 3{8, to the event of getting exactly 2 heads in 4
flips of a fair coin. Following Fermat and Pascal, we interpret this number as follows:

By saying that P p“2 heads in 4 flips”q “ 3{8 we mean that we expect on average to get the
event “2 heads” in 3 out of every 8 runs of the experiment “flip a fair coin 4 times.”

I want to emphasize that this is not a purely mathematical theorem but instead it is a theo-
retical prediction about real coins in the real world. As with mathematical physics, the theory
is only good if it makes accurate predictions. I encourage you to perform this experiment with
your friends to test whether the prediction of 3{8 is accurate. If it is, then it must be that the
assumptions of the theory are reasonable.

More generally, for each possible value of k we will define the event

Ek “ “X “ k” “ “we get exactly k heads in 4 flips of a fair coin.”

From the table above we see that

#E0 “ 1, #E1 “ 4, #E2 “ 6, #E3 “ 4, #E4 “ 1.

Then from the formula P pEkq “ #Ek{#S we obtain the following table of probabilities:

k 0 1 2 3 4

P pX “ kq 1
16

4
16

6
16

4
16

1
16

Now let us consider the event that we obtain “at least 2 heads in 4 flips of a fair coin,” which
we can write as “X ě 2.” According to Fermat and Pascal, we should define

P pX ě 2q “
# ways for X ě 2 to happen

16
.
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Note that we don’t have to compute this from scratch because the event “X ě 2” can be
decomposed into smaller events that we already understand. In logical terms we express this
by using the word “or”:

“X ě 2” “ “X “ 2 OR X “ 3 OR X “ 4.”

In set-theoretic notation this becomes a union of sets:

“X ě 2” “ E2 Y E3 Y E4.

We say that these events are mutually exclusive because they cannot happen at the same time.
For example, it is not possible to have X “ 2 AND X “ 3 at the same time. Set-theoretically
we write E2 X E3 “ H to mean that the intersection of the events is empty. In this case we
can just add up the elements:

# outcomes corresponding to “X ě 2” “ #E2 `#E3 `#E4

“ 6` 4` 1

“ 11.

We conclude that the probability of getting at least two heads in 4 flips of a fair coin is
P pX ě 2q “ 11{16. However, note that we could have obtained the same result by just
adding the corresponding probabilities:

P pX ě 2q “
# ways to get ě 2 heads

#S

“
#E2 `#E3 `#E4

#S

“
#E2

#S
`

#E3

#S
`

#E4

#S

“ P pE2q ` P pE3q ` P pE4q

“ P pX “ 2q ` P pX “ 3q ` P pX “ 4q.

It is worth remarking that we can use the same method to compute the probability of the
event “X “ something,” or “something happens.” Since this event is composed of the smaller
and mutually exclusive events “X “ k” for all values of k, we find that

P pX “ somethingq “ P pX “ 0q ` P pX “ 1q ` P pX “ 2q ` P pX “ 3q ` P pX “ 4q

“
1

16
`

4

16
`

6

16
`

4

16
`

1

16

“
1` 4` 6` 4` 1

16

“
16

16
“ 1.
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In other words, we say that the probability of getting some number of heads is 1, or that
we expect to get some number of heads in 1 out of every 1 runs of the experiment. That’s
reassuring.

We can also divide up the event “X “ something” in coarser ways. For example, we have

“X “ something” “ “X ă 2 OR X ě 2.”

Since the events “X ă 2” and “X ě 2” are mutually exclusive, we can add the probabilities
to obtain

1 “ P pX “ somethingq “ P pX ă 2q ` P pX ě 2q.

This might not seem interesting, but note that it allows us to compute the probability of
getting “less than 2 heads” without doing any further work:

P pX ă 2q “ 1´ P pX ě 2q “ 1´
11

16
“

16

16
´

11

16
“

5

16
.

Here is the general idea.

Complementary Events. Given an event E Ď S we define the complementary event E1 Ď S
which consists of all of the outcomes that are not in E. Because the events E and E1 are
mutually exclusive (E X E1 “ H) and exhaust all of the possible outcomes (E Y E1 “ S) we
can count all of the possible outcomes by adding up the outcomes from E and E1:

#S “ #E `#E1.

If S consists of finitely many equally likely outcomes then we obtain

P pEq ` P pE1q “
#E

#S
`

#E1

#S
“

#E `#E1

#S
“

#S

#S
“ 1.

This is very useful when E1 is less complicated than E because it allows us to compute P pEq
via the formula P pEq “ 1´ P pE1q. ///

The simple counting formula P pEq “ #E{#S gives correct predictions when the experiment
has finitely many equally likely outcomes. However, it can fail in two ways:

• It fails when the outcomes are not equally likely.

• It fails when there are infinitely many possible oucomes.

Right now we will only look at the first case and leave the second case for later.

As an example of an experiment with outcomes that are not equally likely we will consider
the case of a biased coin, that is a coin with the property that P p“heads”q ‰ P p“tails”q. To
be precise let us say that P p“heads”q “ p and P p“tails”q “ q for some arbitrary numbers p
and q. Now suppose that we flip the coin exactly once; the sample space of this experiment
is S “ tH,T u. The events “heads”“ tHu and “tails”“ tT u are mutually exclusive and
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exhaust all the possibilities (we assume that the coin never lands on its side). Even though
the outcomes of this experiment are not equally likely we will assume2 that the probabilities
can still be added:

1 “ P p“something happens”q “ P p“heads”q ` P p“tails”q “ p` q.

We will also assume that probabilities are non-negative, so that 1 ´ p “ q ě 0 and hence
0 ď p ď 1. So our biased coin is described by some arbitrary number p between 0 and 1. Now
since 1 “ p` q we can observe the following algebraic formulas:

1 “ p` q

1 “ 12 “ pp` qq2 “ p2 ` 2pq ` q2

1 “ 13 “ pp` qq3 “ p3 ` 3p2q ` 3pq2 ` q3

1 “ 14 “ pp` qq4 “ p4 ` 4p3q ` 6p2q2 ` 4pq3 ` q4.

The binomial theorem 3 tells us that the coefficients in these expansions can be read off from
a table called “Pascal’s Triangle,” in which each entry is the sum of the two entries above:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

You may notice that the numbers 1, 4, 6, 4, 1 in the fourth row are the same numbers we saw
when counting sequences of 4 coin flips by the number of “heads” that they contain. In general
the number in the k-th entry of the n-th row of Pascal’s triangle is called

`

n
k

˘

, which we read
as “n choose k.” It counts (among other things) the number of sequences of n coin flilps which
contain exactly k “heads.” If we assume that the coin flips are independent (i.e., the coin has
no memory) then we can obtain the probability of such a sequence by simply multiplying the
probabilities from each flip. For example, the probability of getting the sequence HTHT is

P pHTHT q “ P pHqP pT qP pHqP pT q “ pqpq “ p2q2.

As before, we let X denote the number of heads in 4 flips of a coin, but this time we assume
that the coin is biased with P pHq “ p and P pT q “ q. To compute the probability of getting
“exactly two heads” we just add up the probabilities from the corresponding outcomes:

P pX “ 2q “ P pHHTT q ` P pHTHT q ` P pHTTHq ` P pTHHT q ` P pTHTHq ` P pTTHHq

“ ppqq ` pqpq ` pqqp` qppq ` qpqp` qqpp

“ p2q2 ` p2q2 ` p2q2 ` p2q2 ` p2q2

“ 6p2q2.

2Again, this assumption will be justified if it leads to accurate predictions.
3We’ll have more to say about this later.
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At this point you should be willing to believe the following statement.

Binomial Probability. Consider a biased coin with P pHq “ p and P pT q “ q where p`q “ 1
and 0 ď p ď 1. We flip the coin n times and let X denote the number of heads that we get.
Assuming that the outcomes of the coin flips are independent, the probability that we get
exactly k heads is

P pX “ kq “

ˆ

n

k

˙

pkqn´k,

where
`

n
k

˘

is the k-th entry in the n-th row of Pascal’s triangle.4 We say that this random
variable X has a binomial distribution. ///

For example, the following table shows the probability distribution for the random variable
X “ “number of heads in 4 flips of a coin” where p “ P p“heads”q satisfies 0 ď p ď 1. The
binomial theorem guarantees that the probabilities add to 1, as expected:

k 0 1 2 3 4

P pX “ kq p4 4p3q 6p2q2 4pq3 q4

I want to note that this table includes the table for a fair coin as a special case. Indeed, if we
assume that P pHq “ P pT q then we must have p “ q “ 1{2 and the probability of getting 2
heads becomes

P pX “ 2q “ 6p2q2 “ 6

ˆ

1

2

˙2ˆ

1´
1

2

˙2

“ 6

ˆ

1

2

˙2ˆ1

2

˙2

“ 6

ˆ

1

2

˙4

“
6

24
“

6

16
,

just as before. To summarize, here is a table of the binomial distribution for n “ 4 and
various values of p. (P.S. There is a link on the course webpage to a “dynamic histogram” of
the binomial distribution where you can move sliders to see how the distribution changes.)

p P pX “ 0q P pX “ 1q P pX “ 2q P pX “ 3q P pX “ 4q

p p4 4p3q 6p2q2 4pq3 q4

1{2 1{16 4{16 6{16 4{16 1{16

0 1 0 0 0 0

1 0 0 0 0 1

1{6 625{1296 500{1296 150{1296 20{1296 1{1296

For example, if P p“heads”q “ 1{6 then we expects to get “exactly 2 heads” in 150 out of every
1296 runs of the experiment. You can test this prediction as follows: Obtain a fair six-sided
die. Paint one side “blue” and the other five sides “red.” Now roll the die four times and count

4Later we will see that these “binomial coefficients” have a nice formula:
`

n
k

˘

“ n!{pk!pn´ kq!q.
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the number of times you get “blue.” If you run the whole experiment 1296 times I predict
that the event “exactly two blue” will happen approximately 150 times. Try it!

We now have all the tools we need to analyze the Chevalier de Méré’s problem. The key
to the first experiment is to view one roll of a fair six-sided die as some kind of fancy coin
flip where “heads” means “we get a six” and “tails” means “we don’t get a six,” so that
P p“heads”q “ 1{6. The key to the second experiment is to view a roll of two fair six-sided
dice as an even fancier kind of coin flip where “heads” means “we get a double six” and “tails”
means “we don’t get a double six.” What is P p“heads”q in this case?

You will finish the analysis of the Chevalier’s problem on HW1.

Aug 29 and Aug 31

Consider an experiment and let S denote the set of all possible outcomes. For example,
suppose there are three balls in an urn and that the balls are colored red, green and blue. If
we reach in and grab one ball then the set of all possible outcomes is

S “ t red, green, blue u.

We call this set the sample space of the experiment. We will refer to any subset of possible
outcomes E Ď S as an event. Here are the possible events for our experiment:

t red, green, blue u
t red, green u t red, blue u t green, blue u
t red u t green u t blue u

t u

We think of an event as a “kind of outcome that we care about.” For example, the event
E “ t red, blue u means that we reach into the urn and we pull out either the red ball or the
blue ball. The event E “ t green u means that we reach into the urn and pull out the green
ball.

If we assume that each of the three possible outcomes is equally likely (maybe the three
balls have the same size and feel identical to the touch) then Pascal and Fermat tell us that
the probability of an event E is

P pEq “
#E

#S
“

#E

3
.

For example, in this case we will have

P pt red, blue uq “
2

3
and P pt green uq “

1

3
.

But what if the outcomes are not equally likely? (Maybe one of the balls is bigger, or maybe
there are two red balls in the urn.) In that case the Fermat-Pascal definition will make false
predictions.
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Another situation in which the Fermat-Pascal definition breaks down is when our experiment
has infinitely many possible outcomes. For example, suppose that we continue to flip a coin
until we see our first “heads,” then we stop. We can denote the sample space as

S “ tH,TH, TTH, TTTH, TTTTH, TTTTTH, . . .u.

In this case it makes no sense to “divide by #S” because #S “ 8. Intuitively, we also
see that the outcome H is much more likely than the outcome TTTTH. We can modify this
experiment so that the outcomes become equally likely, at the cost of making it more abstract:
Suppose we flip a coin infinitely many times and let X “ the first time we saw heads. The
sample space S consists of all infinite sequences of H’s and T ’s. If the coin is fair then in
principle all of these infinite sequences are equally likely. Let Ek “ “X “ k” be the subset
of sequences in which the first H appears in the k-th position. For example,

E2 “ tTHX : where X is any infinite sequence of H’s and T ’s u.

In this case the Fermat-Pascal definition says

P pX “ 2q “
#E2

#S
“
8

8
,

which still doesn’t make any sense. Our intuition says that the numerator is a slightly smaller
infinity than the infinity in the denominator. But how much smaller?

Throughout the 1700s and 1800s these issues were dealt with on an ad hoc basis. In the
year 1900, one of the leading mathematicians in the world (Davd Hilbert) proposed a list of
outstanding problems that he would like to see solved in the twentieth century.

Hilbert’s 6th Problem. To treat in the same manner, by means of axioms, those physical
sciences in which already today mathematics plays an important part; in the first rank are the
theory of probabilities and mechanics.

In other words, Hilbert was asking for a set of mathematical rules (axioms) that would turn
mechanics/physics and probability into fully rigorous subjects. It seems that Hilbert was way
too optimistic about mechanics, but a satisfying set of rules for probability was given in 1933
by a Russian mathematician named Andrey Kolmogorov.5 His rules became standard and we
still use them today.

Kolmogorov’s Axioms for Probability

Kolmogorov described probability in terms of “measure theory,” which itself is based on George
Boole’s “algebra of sets.”6 Recall that a set S is any collection of things. An element of a set

5Andrey Kolmogorov (1933), Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin. English
Translation: Foundations of the Theory of Probability.

6George Boole (1854), An Investigation of the Laws of Thought, Macmillan and Co., Cambridge.
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is any thing in the set. To denote the fact that “x is a thing in the set S” we will write

x P S.

We also say that x is an element of the set S. For finite sets we use a notation like this:

S “ t1, 2, 4, appleu.

For infinite sets we can’t list all of the elements but we can sometimes give a rule to describe
the elements. For example, if we let Z denote the set of whole numbers (called “integers”)
then we can define the set of positive even numbers as follows:

tn P Z : n ą 0 and n is a multiple of 2u.

We read this as “the set of integers n such that n ą 0 and n is a multiple of 2.” We could also
express this set as

t2, 4, 6, 8, 10, 12, . . .u

if the pattern is clear.

If E1 and E2 are sets we will use the notation “E1 Ď E2” to indicate that E1 is a subset of E2.
This means that every element of E1 is also an element of E2. In the theory of probability
we assume that all sets under discussion are subsets of a given “universal set” S, which is
the sample space. In this context we will also refer to sets as events. There are three basic
“algebraic operations” on sets, which we can visualize using “Venn diagrams.”

We represent an event E Ď S as a blob inside a rectangle, which represents the sample space:

More specifically, we think of the points inside the blob as the elements of E. The points
outside the blob are the elements of the complementary set E1 Ď S:
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If we have two sets E1, E2 Ď S whose relationship is not known then we will represent them
as two overlapping blobs:

We can think of the elements of E1 and E2 as the points inside each blob, which we emphasize
by shading each region:

We define the union E1YE2 and intersection E1XE2 as the sets of points inside the following
shaded regions:
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George Boole interpreted the three basic set-theoretic operations ( 1 , Y , X) in terms of the
“logical connectives” (NOT, OR, AND). We can express this using set-builder notation:

E1 “ tx P S : NOT x P Eu,

E1 Y E2 “ tx P S : x P E1 OR x P E2u,

E1 X E2 “ tx P S : x P E1 AND x P E2u.

If S represents the sample space of possible outcomes of a certain experiment, then the goal
of probability theory is to assign to each event E Ď S a real number P pEq, which measures
how likely this event is to occur.

Kolmogorov decided that the numbers P pEq must satisfy three rules. Any function P satis-
fying the three rules is called a probability measure.

Rule 1. For all E Ď S we have P pEq ě 0.

In words: The probability of any event is non-negative.

Rule 2. For all E1, E2 Ď S with E1 X E2 “ H we have P pE1 Y E2q “ P pE1q ` P pE2q.

In words: We say that two events E1, E2 are mutually exclusive if their intersection is the
empty set H, i.e., if they don’t share any elements in common. In this case, the probability
that “E1 or E2 happens” is the sum of the probabilities of E1 and E2.

By using induction7 we can extend Rule 2 to any sequence of mutually exclusive events.

Rule 2’. Consider a sequence of events E1, E2, . . . , En Ď S such that Ei X Ej “ H for all
i ‰ j. Then we have

P pE1 Y E2 Y ¨ ¨ ¨ Y Enq “ P pE1q ` P pE2q ` ¨ ¨ ¨ ` P pEnq

P

˜

n
ď

i“1

Ei

¸

“

n
ÿ

i“1

P pEiq.

7Never mind the details.
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Any function satisfying Rules 1 and 2 is called a measure. It is not yet a probability measure,
but it already has some interesting properties.

Properties of Measures. Let P satisfy Rules 1 and 2. Then we have the following facts.

• If E1 Ď E2 then P pE1q ď P pE2q.

Proof: If E1 is contained inside E2 then we can decompose E2 as a disjoint union of two
sets as in the following picture:

Since the events E1 and E2 XE11 are mutually exclusive (i.e., the corresponding shaded
regions don’t overlap), Rule 2 says that

P pE2q “ P pE1q ` P pE2 X E11q

P pE2q ´ P pE1q “ P pE2 X E11q.

But then Rule 1 says that P pE2 X E11q ě 0 and we conclude that

P pE2 X E11q ě 0

P pE2q ´ P pE1q ě 0

P pE2q ě P pE1q,

as desired. ///

• For any events E1, E2 Ď S (not necessarily mutually exclusive) we have

P pE1 Y E2q “ P pE1q ` P pE2q ´ P pE1 X E2q.

Proof: Define the sets A “ E1 X E12, B “ E1 X E2 and C “ E11 X E2. Then we can
decompose the union E1 Y E2 into three disjoint pieces as in the following diagram:
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Since the sets A,B,C are disjoint, Rule 2 tells us that

P pE1q “ P pAq ` P pBq

P pE2q “ P pBq ` P pCq

P pE1 Y E2q “ P pAq ` P pBq ` P pCq.

Then by adding the first two equations we obtain

P pE1q ` P pE2q “ rP pAq ` P pBqs ` rP pBq ` P pCqs

“ rP pAq ` P pBq ` P pCqs ` P pBq

“ P pE1 Y E2q ` P pBq

“ P pE1 Y E2q ` P pE1 X E2q.

Subtracting P pE1 X E2q from both sides gives the desired formula. ///

• The empty set has “measure zero”: P pHq “ 0.

Proof: Let E be any set whatsoever and observe that the following silly formulas are
true: E YH “ E and E XH “ H. Therefore, Rule 2 tells us that

P pEq “ P pEq ` P pHq

and subtracting the number P pEq from both sides gives

0 “ P pHq.

///

Example (Counting Measure). If the set S is finite then for any subset E Ď S we let
#E denote the number of elements in the set E. Observe that this counting function satisfies
the two properties of a measure:

• For all E Ď S we have #E ě 0.

• For all E1, E2 Ď S with E1 X E2 “ H we have #pE1 Y E2q “ #E1 `#E2.

We call this the counting measure on the set S. It follows from the previous arguments that
the following three properties also hold:
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• If E1 Ď E2 then #E1 ď #E2.

• For all E1, E2 Ď S we have #pE1 Y E2q “ #E1 `#E2 ´#pE1 X E2q.

• The empty set has no elements: #H “ 0. (Well, we knew that already.)

However, the counting measure on a finite set is not a “probability measure” because it does
not satisfy Kolmogorov’s third and final rule.

Rule 3. We have P pSq “ 1.

In words: The probability that “something happens” is 1.

And by combining Rules 1 and 3 we obtain one final important fact:

• For all events E Ď S we have P pE1q “ 1´ P pEq.

Proof: By definition of the complement we have S “ E YE1 and E XE1 “ H. Then by
Rule 2 we have P pSq “ P pE YE1q “ P pEq ` P pE1q and by Rule 3 we have 1 “ P pSq “
P pEq ` P pE1q as desired. ///

Any function satisfying Rules 1, 2 and 3 is called a probability measure.

Example (Relative Counting Measure). Let S be a finite set. We saw above that the
counting measure #E satisfies Rules 1 and 2. However, it does not satisfy Rule 3 because we
probably don’t have #S “ 1. (The counting measure satisfies Rule 3 only if our experiment
has a single possible outcome, in which case our experiment is very boring.)

We can fix the situation by defining the relative counting measure:

P pEq “
#E

#S
.

Note that this function still satisfies Rules 1 and 2 because

• For all E Ď S we have #E ě 0 and #S ě 1, hence P pEq “ #E{#S ě 0.

• For all E1, E2 Ď S with E1 X E2 ‰ H we have #pE1 Y E2q “ #E1 `#E2 and hence

P pE1 Y E2q “
#pE1 Y E2q

#S
“

#E1 `#E2

#S
“

#E1

#S
`

#E2

#S
“ P pE1q ` P pE2q.

But now it also satisfies Rule 3 because

P pSq “
#S

#S
“ 1.

Thus we have verified that the Fermat-Pascal definition of probability is a specific example of
a Kolmogorov “probability measure.”8 That’s reassuring.

8Later we will call it the uniform probability measure on the set S.
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We discussed the solutions to HW1

The problems on HW1 involved lots of comparisons between different events. Here are some
general principles that helped me when I wrote up the solutions.

Principle of Inclusion-Exclusion. We saw above that all measures satisfy the property

P pAYBq “ P pAq ` P pBq ´ P pAXBq.

On Problem 1.1-9 we were asked to compute a probability of the form P pAYB Y Cq. There
are many ways to break this probability into smaller pieces but one of them is more organized
than all the others. The idea is to begin by adding the probabilities:

P pAYB Y Cq “ P pAq ` P pBq ` P pCq´ ?

If the events are not mutually exclusive then we know that we have to subtract something,
but what? A Venn diagram can help us understand this:

The numbers indicate how many times each region has been counted in the sum P pAq `
P pBq ` P pCq. Note that the double overlaps were counted twice and the triple overlap was
counted three times. To fix this we will first subtract the double overlaps to obtain

P pAq ` P pBq ` P pCq ´ P pAXBq ´ P pAX Cq ´ P pB X Cq

as in the following diagram:
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But this still isn’t right because we have now counted the triple overlap zero times. Thus
we obtain the correct answer by adding a final correction of `P pAXB X Cq:

P pAYB Y Cq “ P pAq ` P pBq ` P pCq ´ P pAXBq ´ P pAX Cq ´ P pB X Cq ` P pAXB X Cq

The same idea works for the union of any number of events. In general we have

P punion of n eventsq “
ÿ

P peventsq

´
ÿ

P pdouble intersectionsq

`
ÿ

P ptriple intersectionsq

´
ÿ

P pquadruple intersectionsq

...

p´1qn´1P pintersection of all n eventsq.

We call this the Principle of Inclusion-Exclusion (or PIE). It is challenging to write down the
statement precisely so we won’t bother.9 Observe that if the events are mutually exclusive
then all double, triple, etc. overlaps are empty, hence they have probability zero. In this case
the PIE just becomes Rule 2 again:

P punion of mutually exclusive eventsq “
ÿ

P peventsq.

///

Rules of Boolean Algebra. We have seen that the “algebra” of sets is based on the three
“Boolean operations” of complement ( 1 ) , union (Y) and intersection (X). In order to work
with these operations it is important to know how they interact.

9One case where it is not difficult to write down the precise formula is when the k-fold intersections have
equal probabilities. If Pk is the probability of any k-fold intersection then the PIE becomes

P punion of n eventsq “
n
ÿ

k“1

p´1qk´1

˜

n

k

¸

Pk.

This was the case in Problem 1.1-9, where we had n “ 3 and Pk “ p1{3q
k.
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First we note that each of ther operations Y,X distributes over the other. That is, for any
events A,B,C we have

AX pB Y Cq “ pAXBq Y pAX Cq,

AY pB X Cq “ pAYBq X pAY Cq.

The easy way to remember these rules is to remember how multiplication of numbers
distributes over addition of numbers:

apb` cq “ ab` ac.

However, we shouldn’t take this analogy too seriously because we all know that addition of
numbers does not distribute over multiplication:

a` bc ‰ pa` bqpa` cq.

Thus there is a symmetry between the set operations Y,X that is not present between the
number operations `,ˆ. Let us verify the first distributive rule by means of Venn diagrams.10

Of course, this union is not disjoint (another word for “mutually exclusive”). To compute the
probability of this event we will have to subtract the overlap of AXB and AX C, which is
pAXBq X pAX Cq “ AXB X C:

P pAX pB Y Cqq “ P prpAXBq Y pAX Cqsq

“ P pAXBq ` P pAX Cq ´ P ppAXBq X pAX Cqq

“ P pAXBq ` P pAX Cq ´ P pAXB X Cq.

Next let us see how complementation interacts with union/intersection. This is expressed via
de Morgan’s11 laws:

pAYBq1 “ A1 XB1

pAXBq1 “ A1 YB1.

I found these rules necessary in my solution of 1.1-7. Let us verify the first rule using Venn
diagrams:

10I encourage you to check the other rule for yourself.
11Augustus de Morgan (1806–1871) was a British mathematician and a contemporary of George Boole.
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You can check the other rule with Venn diagrams if you want, but it’s not really necessary
because it follows logically from the first. That is, let us aply the first de Morgan law to the
union of the events A1 and B1 to obtain

pA1 YB1q “ pA1q1 X pB1q1.

Since the complement of a complement is just the original set, this simplifies to

pA1 YB1q1 “ AXB.

Finally, we take the complement of both sides to obtain

ppA1 YB1q1q1 “ pAXBq1

A1 YB1 “ pAXBq1,

which is the second de Morgan law. ///

Law of Total Probability. By combining the distributive and de Morgan laws we can prove
any Boolean identity that we need. However, there is one more special kind of identity that I
want to single out, called the law of total probability. It says the following: Suppose we have
two events A and B. We can use the event B to break A into two disjoint pieces as follows:

A “ pAXBq Y pAXB1q.

Here is the picture:
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Since the union is disjoint, Kolmogorov’s Rule 2 tells us that

P pAq “ P pAXBq ` P pAXB1q.

This simple rule will become surprisingly important later when we discuss conditional proba-
bility and Bayes’ theorem.

Sept 5 and Hurricane Irma

When discussing coin flips I mentioned the binomial theorem and I said we would return to it
later. Now is the time.

Let a and b be any numbers. The four expressions “˘a˘b” are called binomials. The binomial
theorem tells us how to raise a binomial to a power. For example, observe that

pa` bq0 “ 1,

pa` bq1 “ a` b,

pa` bq2 “ a2 ` 2ab` b2,

pa` bq3 “ a3 ` 3a2b` 3ab2 ` b3,

...

etc.

In general, we see that the expansion of pa` bqn will be a sum of terms of the form akbn´k or
an´kbk for values of k going from 0 to n. The only difficulty is to find the coefficients of these
terms:

pa` bqn “ p?qan ` p?qan´1b` p?qan´2b2 ` ¨ ¨ ¨ ` p?qa2bn´2 ` p?qabn´1 ` p?qbn.

It would be very difficult to guess the answer from scratch. Instead, we have a technique
in mathematics called “name and conquer;” that is, we will simply name these unknown
coefficients and then see what we can learn about them. The standard symbols for these
binomial coefficients are as follows:

pa` bqn “

ˆ

n

0

˙

an `

ˆ

n

1

˙

an´1b`

ˆ

n

2

˙

an´2b2 ` ¨ ¨ ¨ `

ˆ

n

n´ 2

˙

a2bn´2 `

ˆ

n

n

˙

abn´1 `

ˆ

n

n

˙

bn

“

n
ÿ

k“0

ˆ

n

k

˙

an´kbk.

This is not supposed to give you any insight; it’s just notation. The point of the notation is
that it allows us to state the problem more precisely.
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Pascal’s Problem.12 Find an explicit formula for the binomial coefficients
ˆ

n

k

˙

.

///

It’s still very difficult to guess the final answer but this notation allows us to observe some
important patterns. For example, since pa ` bqn “ pb ` aqn we observe that the binomial
coefficients must be symmetric:

ˆ

n

k

˙

“

ˆ

n

n´ k

˙

.

Indeed, the left hand side is defined as the coefficient of an´kbk in the expansion of pa`bqn and
the right hand side is defined as the coefficient of bn´pn´kqan´k in the expansion of pb ` aqn.
But note that bn´pn´kqan´k “ an´kbk. Then since pa ` bqn “ pb ` aqn, these coefficients are
the same.13

At this point we know that the sequence of numbers
ˆ

n

0

˙

,

ˆ

n

1

˙

,

ˆ

n

2

˙

, . . . ,

ˆ

n

n´ 2

˙

,

ˆ

n

n´ 1

˙

,

ˆ

n

n

˙

is symmetric, but we still don’t know what the numbers are. The following pattern (called a
recurrence relation) is the key that will allow us to compute the numbers.

Pascal’s Recurrence. The coefficient
`

n
k

˘

is equal to the k-th entry in the n-th row of
Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

“

`

0
0

˘

`

1
0

˘ `

1
1

˘

`

2
0

˘ `

2
1

˘ `

2
2

˘

`

3
0

˘ `

3
1

˘ `

3
2

˘ `

3
3

˘

`

4
0

˘ `

4
1

˘ `

4
2

˘ `

4
3

˘ `

4
4

˘

To be precise, the numbers
`

n
k

˘

are defined recursively by the boundary conditions

ˆ

n

k

˙

“ 1 when k “ 0 or k “ n

and by the recurrence relation

ˆ

n

k

˙

“

ˆ

n´ 1

k

˙

`

ˆ

n´ 1

k ´ 1

˙

when 0 ă k ă n.

12This problem was understood by many ancient civilizations. We name it after Pascal because he was the
last person to rediscover the solution.

13It’s not so important to understand this argument; just be aware that such an argument exists.
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///

These formulas are just a precise statement of the definition of Pascal’s triangle, but why are
they true?

Proof:14 The idea is to partially expand pa` bqn as follows:

pa` bqn “ pa` bqpa` bqn´1 “ apa` bqn´1 ` bpa` bqn´1.

Then by fully expanding the right hand side we get

pa` bqn “ apa` bqn´1 ` bpa` bqn´1

“ a

„

¨ ¨ ¨ `

ˆ

n´ 1

k ´ 1

˙

apk´1qbpn´1q´pk´1q ` ¨ ¨ ¨



` b

„

¨ ¨ ¨ `

ˆ

n´ 1

k

˙

akbpn´1q´k ` ¨ ¨ ¨



“

„

¨ ¨ ¨ ` a

ˆ

n´ 1

k ´ 1

˙

apk´1qbpn´1q´pk´1q ` ¨ ¨ ¨



`

„

¨ ¨ ¨ ` b

ˆ

n´ 1

k

˙

akbpn´1q´k ` ¨ ¨ ¨



“

„

¨ ¨ ¨ `

ˆ

n´ 1

k ´ 1

˙

akbn´k ` ¨ ¨ ¨



`

„

¨ ¨ ¨ `

ˆ

n´ 1

k

˙

akbn´k ` ¨ ¨ ¨



“ ¨ ¨ ¨ `

„ˆ

n´ 1

k ´ 1

˙

`

ˆ

n´ 1

k

˙

akbn´k ` ¨ ¨ ¨ ,

and it follows that
`

n´1
k

˘

`
`

n´1
k´1

˘

is the coefficient of akbn´k in the expansion of pa` bqn. But

by definition this coefficient is called
`

n
k

˘

. ///

Now we have an easy way to compute the binomial coefficients
`

n
k

˘

for small values of n: just
draw Pascal’s triangle. However, what happens if we need to know the value of

ˆ

100

12

˙

“ ?

To compute this value by recursion we would first need to compute the values of
`

n
k

˘

for all
n ď 100 and k ď 12. That’s almost 1200 computations!

Luckily there is a formula we can use to get the answer directly. Here is it:

ˆ

100

12

˙

“
100

12
¨

99

11
¨

98

10
¨

97

9
¨

96

8
¨

95

7
¨

94

6
¨

93

5
¨

92

4
¨

91

3
¨

90

2
¨

89

1
“ 1050421051106700.

That’s still pretty nasty but at least it’s explicit. You might even be able to compute it by
hand over your lunch break. Once you’ve seen an example like this it’s pretty easy to guess
the pattern.

14It’s not so important to understand this argument; just be aware that such an argument exists.
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Explicit Formula for Binomial Coefficients. For all 0 ă k ď n we have

ˆ

n

k

˙

“
n

k
¨
pn´ 1q

pk ´ 1q
¨
pn´ 2q

pk ´ 2q
¨ ¨ ¨
pn´ k ` 3q

3
¨
pn´ k ` 2q

2
¨
pn´ k ` 1q

1
.

You should check that this formula gives the expected result when k “ n. However, it seems
that the formula has a problem when k “ 0; that’s annoying. To get around the annoyance
we will use the convenient factorial notation. That is, we will define

n! “

#

1 when n “ 0,

npn´ 1qpn´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1 when n ě 1.

Now observe that for all 0 ď k ď n we have

n!

pn´ kq!
“

npn´ 1q ¨ ¨ ¨ pn´ k ` 1q
((((

((((
(((

(((

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

(((
((((

(((
((((

pn´ kqpn´ k ´ 1q ¨ ¨ ¨ 3 ¨ 2 ¨ 1
“ npn´ 1q ¨ ¨ ¨ pn´ k ` 1q.

Thus we can rewrite our formula for the binomial coefficients as follows:

ˆ

n

k

˙

“
npn´ 1q ¨ ¨ ¨ pn´ k ` 1q

k!
“

n!{pn´ kq!

k!
“

n!

k!pn´ kq!
.

You should check that this formula gives the correct “boundary values”
`

n
k

˘

“ 1 when k “ 0
or k “ n. But why does it give the correct values on the interior of Pascal’s triangle?

There are two ways to answer this:

1. You will show on HW2 that the formula n!{pk!pn´ kq!q satisfies the same recurrence
relation as the entries in Pascal’s triangle. Then since the formula is true on the
boundary and satisfies the same recurrence, mathematical induction tells us that it’s
true everywhere. That’s a perfectly valid proof, but it doesn’t really explain where the
formula comes from.

2. To understand what the formula really means we need to take a short dip into the
subject of “combinatorics;” i.e., the art of counting.

What does the algebraic expansion of pa ` bqn have to do with counting? To see this, let
us temporarily forget that multiplication is commutative. That is, let us temporarily assume
that ab ‰ ba. This will force us to be much more organized in our thinking. For example,
instead of pa` bq2 “ a2 ` 2ab` b2 we now have

pa` bq2 “ pa` bqpa` bq “ apa` bq ` bpa` bq “ a2 ` ab` ba` b2.

To be even more organized we can write a2 “ aa and b2 “ bb so that

pa` bq2 “ aa` ab` ba` bb.
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Similarly, by expanding pa` bq3 we obtain

pa` bq3 “ pa` bqpa` bq2

“ pa` bqpaa` ab` ba` bbq

“ apaa` ab` ba` bbq ` bpaa` ab` ba` bbq

“ paaa` aab` aba` abbq ` pbaa` bab` bba` bbbq.

Do you see what’s going on here? In general we see that pa` bqn is the sum of all “words of
length n” using the “letters” a and b:

pa` bqn “
ÿ

pwords of length n using letters a and bq.

How many such words are there? Easy: By substituting a “ 1 and b “ 1 each “word” evaluates
to the number 1, thus the right hand side is just the number of words. And the left hand side,
of course, evaluates to 2n:

2n “ p1` 1qn “ #pwords of length n using letters a and bq.

We could obtain the same result using the multiplication principle for counting: since there
are 2 independent choices (i.e., a or b) for each of the n “letters” in the “word,” the total
number of choices is

2
loomoon

1st letter

ˆ 2
loomoon

2nd letter

ˆ ¨ ¨ ¨ ˆ 2
loomoon

n-th letter

“ 2n.

We can view this process as a branching tree. For example, suppose that we start with the
“empty word” H. Then from each word we draw two branches, where each branch adds either
an a or a b to the right hand side of the word:15

H

b

bb

bbbb

bbaa
b

ba

babb

baaa

ab

a

ab

abbb

abaa
b

aa

aabb

aaaa

a

a

15We could equivalently add letters to the left hand side.
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To get from here back to the binomial theorem we first collect the words into groups with the
same numbers of a’s and b’s. For example, we should express pa` bq3 as

pa` bq3 “ paaaq ` paab` aba` baaq ` pabb` bab` bbaq ` pbbbq.

Then, finally, we remember that ab “ ba so that each sum collapses to a single term:

pa` bq3 “ paaaq ` paab` aab` aabq ` pabb` abb` abbq ` pbbbq

“ 1aaa` 3aab` 3abb` 1bbb

“ a3 ` 3a2b` 3ab2 ` b3.

From this point of view we see that the binomial coefficients 1, 3, 3, 1 are just counting the
words in each of the four groups

aaa aab, aba, baa abb, bab, bba bbb

In general we have the following important counting principle for binomial coefficients.

Binomial Coefficients Count Binary Words. For all 0 ď k ď n we have
ˆ

n

k

˙

“ # pwords made from k “a”s and n´ k “b”sq .

///

There is something a bit subtle going on here. We originally thought of a and b as numbers
that can be added and multiplied. But now it doesn’t matter. At this point we could replace
“a” and “b” with any two distinct symbols. One popular choice is to use “0” and “1,” in
which case the “words” are called “binary strings” or “bit strings.” In order to proceed in
mathematics one must be willing to allow symbols to have multiple different interpretations
at the same time. It takes some mental discipline.

To practice this mental discipline you should now forget everything we have done so far. Forget
the binomial theorem. Forget Pascal’s triangle. Forget everything so we can begin again with
a clean slate. (What I really mean is to temporarily forget these things or just push them
to the side and set up a little clean space in your mind.) The only thing you should think
about right now is the fact that

ˆ

n

k

˙

“ # pwords made from k “a”s and n´ k “b”sq .

Our goal is to explain why

# pwords made from k “a”s and n´ k “b”sq “
n!

k!pn´ kq!
.
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The only way to do this is with a pure counting argument; no amount of algebra will help us.
When I presented this argument in class I was met with many unhappy faces so be warned
that it’s a little bit tricky. You might have to sit with it for a while to feel comfortable.16

The key idea is to relate our counting problem to a slightly different counting problem that
is easier. That is, instead of counting the words made from k indistinguishable copies of the
symbol “a” and n´ k indistinguishable copies of the symbol “b” we will first count the words
that can be made from the following list of n distinguishable symbols:

a1, a2, . . . , ak, b1, b2, . . . , bn´k.

I claim that the number of such words is n! “ npn´ 1qpn´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1. The precise symbols
don’t even matter; I claim that any n distinguishable symbols can be arranged in a line
in precisely n! ways.

Proof: This is another application of the multiplication principle. At first we have n ways
to choose the 1st symbol. Then since one symbol has been used, there are n ´ 1 remaining
choices for the 2nd symbol. Continuing in this way, the total number of choices is

n
loomoon

1st symbol

ˆ n´ 1
loomoon

2nd symbol

ˆ ¨ ¨ ¨ ˆ 1
loomoon

n-th symbol

“ n!.

///

We can also view this process as a branching tree. For example, suppose that we want to
arrange the three (distinguishable) symbols a, b, c in all possible ways. We begin with the
empty word H and then we start adding symbols from left to right, drawing a branch for each
separate choice:

16In any case, an understanding of this argument is not vital for success in the course.
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H

c

cb cba
a

b

ca cab
b

a

c

b

bc bca
a

c

ba bac
c

a
b

a

ac acb
b

c

ab abc
c

b

a

We have 3 choices for the 1st symbol, then 2 choices for the 2nd symbol, then only 1 choice
for the 3rd symbol, for a total of 3! “ 3ˆ 2ˆ 1 “ 6 choices:

abc, acb, bac, bca, cab, cba.

We often call these the permutations of the symbols a, b, c.

Thus we have seen that there are n! permutations of the n distinct symbols

a1, a2, . . . , ak, b1, b2, . . . , bn´k.

However, this number is way too big if we only want to use the indistinguishable symbols

a, a, . . . , a
loooomoooon

k times

, b, b, . . . , b
loooomoooon

n´ k times

.

For example, when k “ 2 and n “ 4 there are 4! “ 24 ways to arrange the symbols a1, a2, b1, b2,
but there are only

`

4
2

˘

“ 6 ways to arrange the symbols a, a, b, b. What accounts for the
difference? Well, each arrangement of the symbols a, a, b, b corresponds to many arrangements
of the symbols a1, a2, b1, b2. For example, the unlabeled word abab gives rise to four different
labeled words:

abab ÞÑ ta1b1a2b2, a1b2a2b1, a2b1a1b2, a2b2a1b1u.
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Why four? Because there are 2! “ 2 ways to place labels on the “a”s and 2! “ 2 ways to place
labels on the “b”s, for a total of 2! ˆ 2! “ 2 ˆ 2 “ 4 choices. In fact, we see that each of the
six unlabeled words can be labeled in precisely four ways. It follows that

#plabeled wordsq “ #punlabeled wordsq ¨#pways to label each unlabeled wordq

24 “ 6 ¨ 4

4! “

ˆ

4

2

˙

¨ p2!ˆ 2!q.

This finally explains why we have
ˆ

4

2

˙

“
4!

2!ˆ 2!
“ 6.

To be fair, we didn’t really need that elaborate argument to see that
`

4
2

˘

“ 4!{p2! ˆ 2!q “ 6
since we can easily just write down the words and count them:

aabb, abab, abba, baab, baba, bbaa.

But what if n is large? In this case there is no way to list all of the words, and the indirect
counting argument becomes very helpful. Recall that

ˆ

n

k

˙

“ #punlabeled words using k “a”s and n´ k “b”sq.

Indeed, this is the only piece of information we retained when we wiped our minds clean. And
given any such unlabeled word, we observe that there are k! different ways to put labels on the
“a”s and pn´ kq! different ways to put labels on the “b”s, for a total of k!ˆ pn´ kq! different
labelings. On the other hand, we know that the total number of labeled words is just n!.
(Indeed, there are n! ways to arrange any n distinguishable symbols.)

In summary, we conclude that

#plabeled wordsq “ #punlabeled wordsq ¨#pways to label each unlabeled wordq

n! “

ˆ

n

k

˙

¨ pk!ˆ pn´ kq!q.

Maybe you still don’t like this, but it is the ultimate reason why we have
ˆ

n

k

˙

“
n!

k!ˆ pn´ kq!
.

I will certainly not ask you to produce combinatorial arguments of this sort, but you should
try at least to appreciate the ideas that went into it. After the hurricane we will elaborate on
the basic principles of counting that were introduced in this lecture and we will apply these
principles to various games of chance such as coin flipping, dice rolling, card dealing, pulling
balls out of an urn, etc. It may seem frivolous but the entire subject of applied probability is
based on these fundamental examples.
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Sept 26

In order to review the pre-Irma material I will introduce the notion of multinomial distribu-
tions. Recall the binomial theorem, which says that for any numbers p and q and for any
non-negative whole number n we have

pp` qqn “
n
ÿ

k“0

n!

k!pn´ kq!
pkqn´k.

If the numbers satisfy 0 ď p, q ď 1 and p` q “ 1 then for each non-negative whole number n
we have pp` qqn “ 1n “ 1 so that

1 “
n
ÿ

k“0

n!

k!pn´ kq!
pkqn´k.

This equation has the following interpretation: Suppose we have a coin where P pHq “ p ě 0
and P pT q “ q “ 1 ´ p ě 0. We flip the coin n times and let X be the number of heads that
we get. Then the probability of getting exactly k heads is

P pX “ kq “
n!

k!pn´ kq!
pkqn´k,

and the previous equation guarantees that these probabilities add to 1, as expected:

1 “
n
ÿ

k“0

P pX “ kq.

If p “ q “ 1{2 (i.e., if the coin is fair) then we obtain

P pX “ kq “
n!

k!pn´ kq!

ˆ

1

2

˙k ˆ1

2

˙n´k

“
n!

k!pn´ kq!

ˆ

1

2

˙n

“

n!
k!pn´kq!

2n
.

In this case each of the possible 2n sequences of flips is equally likely, so we can use the
formula

P pwe get k headsq “
# ways to get k heads

total # possible outcomes
.

This reminds us that the binomial coefficient n!
k!pn´kq! also counts the number of sequences

(“words”) of length n that contain k copies the letter H and n´ k copies of the letter T .

Now let’s consider a fancier situation.

Problem. Suppose that we have a fair 4-sided die with sides labeled by the letters m, i, s, p.
Suppose we roll the die 11 times. What is the probability that we get the word mississippi?

Let S be the sample space, which consists of all words17 of length 11 using only the letters
m, i, s, p. How many such words are there? We can view the possiblities as a branching tree.
Here is the picture for the first two rolls:

17These are mathematical “words,” not English “words.” They don’t have to mean anything or even be
pronounceable.
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H

p

pp

ps

pi

pm

s

sp

ss

si

sm

i

ip

is

ii

im

m

mp

ms

mi

mm

The full picture for 11 rolls is impossible to draw, but we do see that the number of branches
gets multiplied by 4 each time. Thus after 11 rolls the total number of branches will be

#S “ 4ˆ 4ˆ ¨ ¨ ¨ ˆ 4
loooooooomoooooooon

11 times

“ 411.

Since the die is fair we assume that each of the 411 possible outcomes is equally likely.
Finally, since there is exactly one way to get “mississippi” we conclude that

P pmississippiq “
1

411
« 0.000024%.

This is so unlikely that it will essentially never happen. So let’s revise the problem.

Revised Problem. With the same experiment as before, what is the probability that in the
11 rolls of the die we get

1 copy of m, 4 copies of i, 4 copies of s and 2 copies of p?

That is, what is the probability that the we get the correct letters from the word mississippi,
but not necessarily in the correct order?
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Since the outcomes of the experiment are equally likely, this reduces to a counting problem:
In how many ways can we rearrange the letters

m, i, i, i, i, s, s, s, s, p, p ?

The answer is not immediately obvious so we will denote this number by the unknown N .
How about the following related problem: In how many ways can we rearrange the symbols

m1, i1, i2, i3, i4, s1, s2, s3, s4, p1, p2 ?

This time the 11 symbols are all distinct so we know that there are 11! ways to put them in
order. Clearly the number N is smaller than 11!, but how much smaller? As we saw before
the hurricane, there are 4 ways to place labels on the word abab:

abab ÞÑ

a1b1a2b2
a1b2a2b1
a2b1a1b2
a2b2a1b1

This is because there are 2! “ 2 ways to label the a’s and 2! “ 2 ways to label the b’s, for a
total of 2!ˆ 2! “ 4 labelings. For each rearrangement of the letters m, i, i, i, i, s, s, s, s, p, p (for
example, the word mississippi) there will be 1! “ 1 way to label the m, 4! “ 24 ways to label
the i’s, 4! “ 24 ways to label the s’s and 2! “ 2 ways to label the p’s, for a total of

1!ˆ 4!ˆ 4!ˆ 2! “ 1ˆ 24ˆ 24ˆ 2 “ 1125 labelings.

Since every unlabeled word can be labeled in 1125 ways we conclude that the number 11! is
1125 times bigger than the number N . In other words, we have

#plabeled wordsq “ #punlabeled wordsq ¨#pways to label each unlabeled wordq

11! “ N ¨ p1!ˆ 4!ˆ 4!ˆ 2!q

and it follows that

N “
11!

1!ˆ 4!ˆ 4!ˆ 2!
“

11 ¨ 10 ¨ 9 ¨ �8 ¨ 7 ¨ �6 ¨ 5 ¨(((
((4 ¨ 3 ¨ 2 ¨ 1

1 ¨ �4 ¨���3 ¨ 2 ¨ 1 ¨((((
(

4 ¨ 3 ¨ 2 ¨ 1 ¨ �2 ¨ 1
“ 11 ¨ 10 ¨ 9 ¨ 7 ¨ 5.

Finally, we can compute the probability:

P pwe get the letters m, i, s, s, i, s, s, i, p, p, i in some orderq “
11 ¨ 10 ¨ 9 ¨ 7 ¨ 5

411
« 0.83%.

This probability is still quite small but it’s large enough that we would expect to see it in
a real life experiment. Thinking Problem: How many times would you have to perform the
experiment to have a 50% chance of seeing this outcome at least once?18

18Hint: Let p be the probability of the rare event. The probability that it happens at least once in n
repetitions of the experiment is 1 ´ p1 ´ pqn. Since p1 ´ pq ă 1 we know that p1 ´ pqn Ñ 0 (and hence the
probability of occurrence goes to 1) as n Ñ 8. You can use a computer to find the smallest value of n such
that 1´ p1´ pqn ą 0.5. See HW2 Exercise 1.3-11 for another example of this kind of problem.
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Another way to phrase the previous example is to treat the symbols m, i, s, p as numbers
and then raise the quantity m` i` s` p to the power of 11.19 Note that

pm` i` s` pq11 “ ¨ ¨ ¨ `mississippi` ¨ ¨ ¨ ,

where the total number of summands on the right hand side is 411 (so I won’t write them
all). However, since the multiplication of numbers is commutative it is more conventional to
write mississippi “ m1i4s4p2. After grouping the terms with the same number of factors we
obtain:

pm` i` s` pq11 “ ¨ ¨ ¨ `
11!

1!4!4!2!
m1i4s4p2 ` ¨ ¨ ¨ .

Here is the general situation:

Multinomial Theorem. Let a1, a2, . . . , as be any s numbers. Then for any non-negative
integer n we have

pa1 ` a2 ` ¨ ¨ ¨ ` asq
n “

ÿ n!

k1!k2! ¨ ¨ ¨ ks!
ak11 ak22 ¨ ¨ ¨ a

ks
s .

The summation is over all possible non-negative integers k1, k2, . . . , ks that sum to n, i.e., such
that k1 ` k2 ` ¨ ¨ ¨ ` ks “ n. We will use the special notation

ˆ

n

k1, k2, . . . , ks

˙

“
n!

k1!k2! ¨ ¨ ¨ ks!

for the coefficients, and we will call them multinomial coefficients. ///

The multinomial theorem has the following probabilistic interpretation.

Multinomial Probability. Suppose that you roll a fair s-sided die n times. (When s “ 2
we can think of this as flipping a fair coin.) Suppose that the faces of the die are labeled with
the symbols a1, a2, . . . , as. The sample space has size sn, because it consists of all sequences
(words) of length n using the symbols a1, a2, . . . , as. The probability that we get the symbol
a1 exactly k1 times, the symbol a2 exactly k2 times, . . . and the symbol as exactly ks times is

`

n
k1,k2,...,ks

˘

sn
.

The multinomial theorem guarantees that all of these probabilities add to 1. Indeed, by
substituting a1 “ a2 “ ¨ ¨ ¨ “ as “ 1 into the theorem we obtain

sn “ p1` 1` ¨ ¨ ¨ ` 1qn “
ÿ

ˆ

n

k1, k2, ¨ ¨ ¨ , ks

˙

19Much like Nigel Tunfel’s amplifier.
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sn{sn “

„

ÿ

ˆ

n

k1, k2, ¨ ¨ ¨ , ks

˙

{sn

1 “
ÿ

`

n
k1,k2,...,ks

˘

sn
.

///

And how does this relate to the binomial theorem that we know and love? If s “ 2 then the
multinomial theorem says that

pa1 ` a2q
n “

ÿ n!

k1!k2!
ak11 ak22 ,

where the summation is over all pairs of non-negative integers k1, k2 such that k1 ` k2 “ n.
But in this case we might as well substitute k2 “ n´ k1 to obtain

pa1 ` a2q
2 “

ÿ n!

k1!pn´ k1q!
ak11 an´k12 ,

where the sum is over all possible values of k1. Now it should look familiar. You should check
that the notations for binomial and multinomial coefficients are related as follows:

ˆ

n

k

˙

“

ˆ

n

k, n´ k

˙

“

ˆ

n

n´ k, k

˙

“

ˆ

n

n´ k

˙

.

See HW2 for a hint of what happens to Pascal’s triangle when s ą 2.

Sept 28

The first in-class exam is set for Tues Oct 10 and it will cover all of Chapter 1 except for
Section 1.4 (Independent Events). The only topic from Chapter 1 not yet covered in lecture is
Conditional Probabiliy and Bayes’ Theorem. These are closely related to the “multiplication
principle” for counting, so I will work them in as we continue to practice our counting skills.

Motivating Example for Conditional Probability. Suppose that a bowl contains 7 blue
chips and 8 red chips. We reach in and draw two chips “successively at random, and without
replacement.” We want to compute the following probability:

P p 1st chip is red AND 2nd chip is blue q “ ?

There are (at least) two ways to do this.

1. Count! We will assume that the possible outcomes are equally likely. This is plausible if
the chips all have the same size and feel identical to the touch. Since there are 10 chips in the
bowl, the number of ways to choose 2 chips in succession and without replacement is

#S “ 10
loomoon

ways to choose
1st chip

ˆ 9
loomoon

ways to choose
2nd chip

“ 10 ¨ 9 “ 90.
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Now let E be the event that “the 1st chip is red and the 2nd chip is blue.” We can use the
same multiplication principle to count the outcomes:

#E “ 3
loomoon

ways to choose
1st chip

ˆ 7
loomoon

ways to choose
2nd chip

“ 3 ¨ 7 “ 21.

Since the outcomes are equally likely it follows that

P pEq “
#E

#S
“

21

90
“

7

30
.

///

When we are dealing with an experiment with finitely many equally likely outcomes, every
question of probability can be turned into a counting problem. But counting accurately is
sometimes difficult so we prefer to look for shortcuts.

2. Look for a shortcut. We saw above that

P p 1st is red and 2nd is blue q “
3 ¨ 7

10 ¨ 9
,

where the numerator and denominator are viewed as answers to two counting problems. It is
tempting to group the factors vertically instead of horizontally, as follows:

P pEq “
3 ¨ 7

10 ¨ 9
“

3 ¨ 7

10 ¨ 9
“

3

10
¨

7

9
“

3

10
¨

7

9
.

This looks like a product of two probabilities, but which probabilities? Let us define the events

E1 “ “the 1st chip is red,”

E2 “ “the 2nd chip is blue,”

so that E “ E1 X E2. Observe that P pE1q “ 3{10 since there are 10 chips in the bowl, 3 of
which are red. Therefore we have

P pEq “ P pE1 X E2q “ P pE1q ¨
7

9
.

It would be nice if P pE2q “ 7{9, because then we would have

P pE1 X E2q “ P pE1q ¨ P pE2q,

but this equation is false because the events E1 and E2 are not independent. Instead we
should view the fraction 7{9 as the probability that E2 happens assuming that E1 already
happened.20 We will use the following notation:

P pE2|E1q “ the probabiliy of E2, assuming that E1 happened.

20For now we will assume that the event E1 happens before E2 in time. Later we will consider inverse
situations where we want to know the probability of an event in the present, assuming that something will
happen in the future. Luckily the equations in both cases are exactly the same.
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In our case we have

P p 2nd chip is blue, assuming that the 1st chip is red q “
7

9

because after selecting the 1st red chip there are 9 remaining chips in the bowl, 7 of which are
blue. Thus the true formula for our problem is

P pEq “ P pE1 X E2q “ P pE1q ¨ P pE2|E1q,

which is very convenient because each of the probabilities P pE1q and P pE2|E1q is easy to
compute. You should observe that this equation is closely related to the “multiplication
principle” of counting:

#pways E1 X E2 can happenq “ #pways E1 can happenqˆ

#pways E2 can happen, assuming that E1 already happenedq.

Here is the general situation:

Conditional Probability: Consider an experiment with sample space S and let A,B Ď S
be any two events. We use the notation P pB|Aq to express the probability that “B happens,
assuming that A happens.” By the multiplication principle, this probability should satisfy the
equation

P pAXBq “ P pB XAq “ P pAq ¨ P pB|Aq,

so that

P pB|Aq “
P pB XAq

P pAq
.

///

Another way to remember this formula is by using a Venn diagram. At first, we can think of
the probability of B as the “area of the blob B as a proportion of the sample space S.” If we
assume that A happens, then we are essentially shrinking the sample space to coincide with
A. Then the probabiliy of B|A is the “area of the blob B X A as a proportion of the new
sample space A.” Here is the picture:
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As the picture suggests, the “unconditioned” probability of B can also be expressed as

P pB|Sq “
P pB X Sq

P pSq
“

P pBq

P pSq
“

P pBq

1
“ P pBq.

In other words, we have:

P pB happens, assuming that something happensq “ P pB happensq.

That’s reassuring.

We’ll have more to say about conditional probability on Tuesday. Now let’s practice some
counting in advance of HW2 and Exam1. Here’s an exercise21 from the text:

Exercise 1.2-3. A certain state uses license plates with a sequence of letters followed by a
sequence of digits. The symbols on a license plate are necessarily ordered.

(a) How many license plates are possible if 2 letters are followed by 4 digits?

Answer: If letters and digits can be repeated, then

#pplatesq “ 26
loomoon

1st letter

ˆ 26
loomoon

2nd letter

ˆ 10
loomoon

1st digit

ˆ 10
loomoon

2nd digit

ˆ 10
loomoon

3rd digit

ˆ 10
loomoon

4th digit

“ 6, 760, 000.

If letters and digits cannot be repeated, then

#pplatesq “ 26
loomoon

1st letter

ˆ 25
loomoon

2nd letter

ˆ 10
loomoon

1st digit

ˆ 9
loomoon

2nd digit

ˆ 8
loomoon

3rd digit

ˆ 7
loomoon

4th digit

“ 3, 276, 000.

21slightly modified
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(b) How many license plates are possible if 3 letters are followed by 3 digits?

Answer: If letters and digits can be repeated, then

#pplatesq “ 26
loomoon

1st letter

ˆ 26
loomoon

2nd letter

ˆ 26
loomoon

3rd letter

ˆ 10
loomoon

1st digit

ˆ 10
loomoon

2nd digit

ˆ 10
loomoon

3rd digit

“ 17, 576, 000.

If letters and digits cannot be repeated, then

#pplatesq “ 26
loomoon

1st letter

ˆ 25
loomoon

2nd letter

ˆ 24
loomoon

3rd letter

ˆ 10
loomoon

1st digit

ˆ 9
loomoon

2nd digit

ˆ 8
loomoon

3rd digit

“ 11, 232, 000.

///

That problem was relatively straightforward. Now let’s jump to a much trickier problem.

Poker Hands. In a standard deck of cards there are 4 possible “suits” (♣,♦,♥,♠) and 13
possible “ranks” (2, 3, 4, . . . , 9, 10, J,Q,K,A). Each card has a suit and a rank, and all possible
combinations occur, so a standard deck contains

4
loomoon

# suits

ˆ 13
loomoon

# ranks

“ 52 cards.

In the game of poker, a “hand” of 5 cards is dealt from the deck. If we regard the cards in a
hand as ordered then the number of possible hands is

52
loomoon

1st card

ˆ 51
loomoon

2nd card

ˆ 50
loomoon

3rd card

ˆ 49
loomoon

4th card

ˆ 48
loomoon

5th card

“
52!

47!
“ 311, 875, 200.

However, it is more conventional to regard a hand of cards as unordered. Note that each
unordered hand can be ordered in 5! “ 120 ways, thus to obtain the number of unordered
hands we should divide the number of ordered hands by 5! to obtain

ˆ

52

5

˙

“
52!

5! ¨ 47!
“

52!{47!

5!
“

311, 875, 200

120
“ 2, 598, 960.

Indeed, we read the symbol
`

52
5

˘

as “52 choose 5” because it counts the number of ways to
choose 5 unordered objects from a collection of 52.

Let S be the sample space of unordered poker hands, so that #S “
`

52
5

˘

“ 2, 598, 960. Now,
there are certain kinds of events E Ď S that have different values in the game based on how
rare they are. For example, if our hand contains 3 cards of the same rank (regardless of suit)
and 2 cards of two other ranks then we say we have “3 of a kind.” If E ““3 of a kind,” then
assuming that all possible hands are equally likely gives

P p3 of a kindq “ P pEq “
#E

#S
“

#E

2, 598, 960
,

and it only remains to count the elements of E.

There are many ways to do this. I’ll show you one method that I like. Note that a hand in
the set E ““3 of a kind” can be determined by making the following sequence of choices:
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• Choose a rank for the triple. Since there are 13 possible ranks, the number of ways to
choose one of them is

`

13
1

˘

“ 13!{p1! ¨ 12!q “ 13.

• From the 4 cards of this rank, choose the 3 cards of the triple. There are
`

4
3

˘

“ 4!{p3!¨1!q “
4 ways to do this.

• Of the 12 remaining ranks we want to choose two different ranks for the singles. There
are

`

12
2

˘

“ 12!{p2! ¨ 10!q “ p12 ¨ 11q{2 “ 6 ¨ 11 “ 66 ways to do this.

• From the first of these ranks we can choose the first single in
`

4
1

˘

“ 4 ways.

• From the second of these ranks we can choose the second single in
`

4
1

˘

“ 4 ways.

For example, suppose our first choice is the rank “J .” Then from the suits t♣,♦,♥,♠u we
choose the triple t♣,♥,♠u. Next we choose the ranks t5, Au from the remaining 12, then we
choose the suits t♦u and t♣u for the singles. The resulting hand is

J♣, J♥, J♠, 5♦, A♣.

In summary, the total number of ways to get “3 of a kind” is

#E “

ˆ

13

1

˙

loomoon

choose rank
for triple

ˆ

ˆ

4

3

˙

loomoon

choose triple
from rank

ˆ

ˆ

12

2

˙

loomoon

choose ranks
for singles

ˆ

ˆ

4

1

˙

loomoon

choose single
from rank

ˆ

ˆ

4

1

˙

loomoon

choose single
from rank

“ 13ˆ 4ˆ 66ˆ 4ˆ 4

“ 54, 912,

and hence the probability of getting 3 of a kind is

P p3 of a kindq “
54, 912

2, 598, 960
« 2.11%.

///

If the two singles have the same rank instead of different ranks, we don’t call it “3 of a kind;”
in this case we call it a “full house.” That is, a “full house” consists of a triple from one rank
and a double from a different rank. We can easily modify our method to count these hands:
If F ““full house” then we have

#F “

ˆ

13

1

˙

loomoon

choose rank
for triple

ˆ

ˆ

4

3

˙

loomoon

choose triple
from rank

ˆ

ˆ

12

1

˙

loomoon

choose rank
for double

ˆ

ˆ

4

2

˙

loomoon

choose double
from rank

“ 13ˆ 4ˆ 12ˆ 6

“ 3, 744,

and hence

P pfull houseq “
3, 744

2, 598, 960
« 0.144%.
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Note that E ““3 of a kind” is approximately 15 times more common that F ““full house”
and thus a full house is approximately 15 times more valuable than 3 of a kind. ///

As a final example, consider the event G ““4 of a kind” which consists of a quadruple from
one rank and a single from a different rank. Using the same method gives

#G “

ˆ

13

1

˙

loomoon

choose rank
for quadruple

ˆ

ˆ

4

4

˙

loomoon

choose quadruple
from rank

ˆ

ˆ

12

1

˙

loomoon

choose rank
for single

ˆ

ˆ

4

1

˙

loomoon

choose single
from rank

“ 13ˆ 1ˆ 12ˆ 4

“ 624,

and hence the probability is

P p4 of a kindq “
624

2, 598, 960
« 0.024%.

Note that F ““full house” is exactly 6 times more common that G ““4 of a kind.” ///

For your convenience, here is a table of the standard poker hands, listed in order of probability.
Most of them can be solved with the same method we used above.

Name of Hand Frequency Probability

Royal Flush 4 0.000154%

Straight Flush 36 0.00139%

Four of a Kind 624 0.024%

Full House 3,744 0.144%

Flush 5,108 0.197%

Straight 10,200 0.392%

Three of a Kind 54,912 2.11%

Two Pairs 123,552 4.75%

One Pair 1,098,240 42.3%

Nothing 1,302,540 50.1%

I defined the event “nothing” as “none of the above,” so that all of the probabilies add to 1.
It is probably significant that the probability of “nothing” is slightly more than 50%.
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Oct 3

Let’s recall the definition of conditional probability by looking at Example 1.3-7 in the text.

Example 1.3-7. Start drawing cards successively at random from a standard deck of 52.
Record whether each card is a spade or not, and continue until all the cards are gone. Compute
the following probability:

P p3rd spade occurs on the 6th drawq “ ?

As always, there are multiple ways to solve this. One way is to treat it as a brute force counting
problem. Let S be the set of all possible ways to draw the cards. Since we are essentially just
putting the cards in a random order, the size of the sample space is

#S “ 52! « 8.066ˆ 1067.

Well, okay. Now let E be the set of orderings in which the 3rd spade occurs in the 6th position
of the ordering. I’m sure we could count those.22

But instead of doing it this way, let’s analyze the problem more abstractly. If the 3rd spade
occurs on the 6th draw, this means that we got exactly 2 spades in the first five draws. With
this in mind we define the following events:

A “ “we get 2 spades in the first 5 draws,”

B “ “we get a spade on the 6th draw.”

Now the probability we are looking for is P pAX Bq. Since the event A comes before B, it is
reasonable to multply the probabilities as follows:

P pA and B both happenq “ P pA happensq ¨ P pB happens, assuming that A happenedq

P pAXBq “ P pAq ¨ P pB|Aq.

If we assume that A happened (i.e., if there were 2 spades in the first 5 draws), then there
will be 52´ 5 “ 47 remaining cards and 13´ 2 “ 11 of these will be spades. Thus, when we
draw the 6th card at random, the probability that we get a spade is

P pB|Aq “
#(remaining spades)

#(remaining cards)
“

11

47
« 0.234.

To finish the problem we just need to compute

P pAq “ P p2 spades in the first 5 drawsq “ ?

22Exercise: Try to count them.
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Observe that this is equivalent to the following “poker” problem: Deal 5 cards at random from
a standard deck of 52. What is the probability that we get 2 spades? If we treat the “poker
hand” as 5 unordered cards then the answer is

P pAq “
#(choose 2 unordered spades)¨#(choose 3 unordered non-spades)

#(choose 5 unordered cards)

“

`

13
2

˘`

39
3

˘

`

52
5

˘ « 0.274.

And if we treat the “poker hand” as 5 ordered cards then the answer is

P pAq “
#(choose places for spades)¨#(choose 2 ordered spades)¨#(choose 3 ordered non-spades)

#(choose 5 ordered cards)

“

`

5
2

˘

¨ p13ˆ 12q ¨ p39ˆ 38ˆ 37q

52ˆ 51ˆ 50ˆ 49ˆ 48
« 0.274.

Since the two methods give exactly the same answer23 we can use our favorite; I don’t know
about you but I think the first (unordered) is easier.

In summary, we have

P pAXBq “ P pAq ¨ P pB|Aq « p0.274q ¨ p0.234q « 0.064.

In other words, there is a 6.4% chance the the third spade will occur on the 6th draw. This
completes the example from the textbook. ///

Now let me make a weird observation. In all the examples so far, we have interpreted the
conditional probability P pA|Bq as follows:

P pA|Bq “ the probability that A happens now, given that B happened in the past.

But the mathematical formula

P pB XAq “ P pBq ¨ P pA|Bq

makes no mention of this time sequence. In fact, there is nothing to stop us from reversing
the roles of A and B in this equation to obtain

P pAXBq “ P pAq ¨ P pB|Aq.

Finally, since AXB “ B XA we can combine the the two equations to obtain

P pBq ¨ P pA|Bq “ P pB XAq “ P pAXBq “ P pAq ¨ P pB|Aq

23Check this!
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and hence

P pB|Aq “
P pBq ¨ P pA|Bq

P pAq
.

But what does this formula mean? Here’s a possible interpretation:

P pB|Aq “ the probability that B happened first, assuming that A happened later.

The first person to consider this kind of backwards or inverse probability was the reverend
Thomas Bayes (1701–1761). Therefore the boxed formula is often called Bayes’ Theorem.
Let’s see an example.

Example of Bayes’ Theorem. Consider a certain diagnostic test T for a disease D. Suppose
we choose a person at random and administer the test. Define the events

T` “ “the test returns positive,”

T´ “ “the test returns negative,”

D` “ “the person has the disease,”

D´ “ “the person does not have the disease.”

Suppose that we know the following about the test:

• If a person has the disease then the test is very likely to return positive:

P pT`|D`q “ 0.99,

P pT´|D`q “ 0.01.

• If a person does not have the disease then the test is very likely to return negative:

P pT´|D´q “ 0.98,

P pT`|D´q “ 0.02.

So far this seems like an accurate test, but we should be careful. Suppose that a random
person took the test and it came back positive. What is the probability that this person
actually had the disease? In this case we are trying to use information about the present to
obtain information about the past. Bayes’ formula says that

P pD`|T`q “
P pD` X T`q

P pT`q
“

P pD`q ¨ P pT`|D`q

P pT`q
.

This is still not much help unless we know the prevalence of this disease in the population.
Let’s assume that the disease occurs in one out of every thousand people:

P pD`q “ 0.001 and P pD´q “ 0.999.
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Now we only need to compute P pT`q, which we do by partitioning the event T` into the two
pieces T` XD` and T` XD´. Then the “law of total probability” tells us24 that

T` “ pT` XD`q \ pT` XD´q

P pT`q “ P pT` XD`q ` P pT` XD´q

and by applying the definition of conditional probability we obtain

P pT`q “ P pT` XD`q ` P pT` XD´q

“ P pD`q ¨ P pT`|D`q ` P pD´q ¨ P pT`|D´q.

Finally we can compute the probability that a positive test indicates the presence of disease:

P pD`|T`q “
P pD`q ¨ P pT`|D`q

P pT`q

“
P pD`q ¨ P pT`|D`q

P pD`q ¨ P pT`|D`q ` P pD´q ¨ P pT`|D´q

“
p0.001qp0.99q

p0.001qp0.99q ` p0.999qp0.02q
« 4.93%.

Hmm. . . maybe this test isn’t so good after all. ///

I’ll close with an example from the textbook that illustrates the most general version of Bayes’
Theorem.

Example 1.5-1. There are three bowls containing red and white chips, as follows:

• Bowl 1 contains 2 red and 4 white chips.

• Bowl 2 contains 1 red and 2 white chips.

• Bowl 3 contains 5 red and 4 white chips.

The bowls are kept in a secret room. Suppose your friend walks into the secret room and
performs the following experiment:

• First, your friend chooses a bowl according to the probabilities

P pB1q “
1

3
, P pB2q “

1

6
and P pB3q “

1

2
.

• Then, your friend chooses a chip at random from their chosen bowl.

• Finally, your friend emerges from the secret room and shows you their chip.

24Sometimes I use the “square cup” symbol \ to denote a union that is disjoint.
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Let R be the event that your friend shows you a red chip. Assuming that the chip is red,
what is the probability that the chip came from the 1st bowl? In other words, what is the
probability

P pB1|Rq “ ?

Here we are trying to get information about the past by using information about the present,
which is exactly what Bayes’ Theorem is for. First we note that

P pB1|Rq “
P pB1q ¨ P pR|B1q

P pRq
.

In order to compute P pRq we will partition R according to the events B1, B2, B3. Note that
these three events partition the sample space of all possible chips, as in the following picture:

Since the events B1, B2, B3 partition the sample space S, they also partition the event R:

R “ pRXB1q \ pRXB2q \ pRXB3q.

Therefore we obtain

P pRq “ P pRXB1q ` P pRXB2q ` P pRXB3q

“ P pB1q ¨ P pR|B1q ` P pB2q ¨ P pR|B2q ` P pB3q ¨ P pR|B3q.

We have now expressed everything in terms of the probabilities P pB1q, P pB2q, P pB3q and the
“forwards” probabilities, which we know:

P pR|B1q “
2

2` 4
“

2

6
, P pR|B2q “

1

1` 2
“

1

3
and P pR|B3q “

5

5` 4
“

5

9
.

Therefore we obtain the desired “backwards” probability:

P pB1|Rq “
P pB1q ¨ P pR|B1q

P pB1q ¨ P pR|B1q ` P pB2q ¨ P pR|B2q ` P pB3q ¨ P pR|B3q

“
p1{3qp2{6q

p1{3qp2{6q ` p1{6qp1{3q ` p1{2qp5{9q
“

2

8
“ 25%.
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In other words, if our friend emerges from the secret room with a red chip, there is a 25%
chance that the chip came from the 1st bowl. That is lower than the 33.33% chance that a
generic chip (red or white) came from the 1st bowl.

After a few more computations we arrive at the following table:

P pB1q “ 2{6 P pB2q “ 1{6 P pB3q “ 3{6

P pB1|Rq “ 2{8 P pB2|Rq “ 1{8 P pB3|Rq “ 5{8

The first row is the prior distribution on the bowls. That is, before we know anything about
the chip, these are the probabilities that the chip came from each bowl. After we know that
the chip is red, we should update our belief to the posterior distribution in the second row.

In summary, here is the official statement of Bayes’ Theorem.

Bayes’ Theorem. Suppose that our sample space S is partitioned into m “bowls” as follows:

S “ B1 YB2 Y ¨ ¨ ¨ YBm with Bi XBj “ H for all i ‰ j.

We call P pBkq the prior probability of the kth bowl. Now let A Ď S be any event. We can
partition A in terms of the bowls:

A “ pAXB1q \ pAXB2q \ ¨ ¨ ¨ \ pAXBmq

P pAq “ P pAXB1q ` P pAXB2q ` ¨ ¨ ¨ ` P pAXBmq

and then we can apply the definition of conditional probability to obtain

P pAq “
m
ÿ

i“1

P pAXBiq “

m
ÿ

i“1

P pBiqP pA|Biq.

Finally, we can compute the posterior probability of the kth bowl as follows:

P pBk|Aq “
P pBk XAq

P pAq
“

P pBkqP pA|Bkq
řm

i“1 P pBiqP pA|Biq
.

Oct 5

We talked about the HW2 solutions and then I gave a short review of the topics that will be
on Exam1, i.e., all of Chapter 1 except for Section 1.4 (Independent Events). The best way
to study is to focus on

• my typed HW solutions,
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• my lecture notes,

• the textook,

in that order. And keep yourself honest: If there is a problem that you don’t feel confident
about, try out a similar problem from the textbook (odd numbered solutions are in the back
of the book), or put everything to the side and try to recreate the problem from memory.

Finally, I stated that there will be no electronic devices or formula sheets allowed on
the exam. This means that you can leave your answers in unevaluated form: for example, if I
ask you for the probability that a poker hand has exactly 2 spades, you will receive full points
for the answer

`

13
2

˘`

39
3

˘

{
`

52
5

˘

; you do not need to simplify this to 27.4%.

As for the lack of a formula sheet, here are some facts that you can memorize for the exam:

• Let S be a finite set of equally likely outcomes. Then the probability of an event
E Ď S is defined by

P pEq “
#E

#S
.

• Flip a fair coin n times. The sample space S is the set of “H,T -words” of length n, so
that #S “ 2n. Let E Ď S be the subset consisting of words with k “H”s (and hence
n´ k “T”s). Then we have #E “

`

n
k

˘

. Since all outcomes are equally likely we obtain

P pwe get k heads in n flips of a fair coinq “
#E

#S
“

`

n
k

˘

2n
.

• More generally, consider a coin with P pHq “ p ě 0 and P pT q “ q “ 1 ´ p. This
experiment still has 2n possible outcomes, but if p ‰ 1{2 then the outcomes are not
equally likely. The new correct formula is

P pwe get k heads in n flips of the coinq “

ˆ

n

k

˙

pkqn´k.

This agrees with the previous formula when we substitute p “ q “ 1{2.

• These “binomial probabilities” add to 1 because of the binomial theorem:

n
ÿ

k“0

ˆ

n

k

˙

pkqn´k “ pp` qqn “ 1n “ 1.

• In general, a probability measure on a sample space S is supposed to satisfy three rules:

1. For all E Ď S we have P pEq ě 0.

2. For all E1, E2 Ď S with E1 X E2 “ H we have

P pE1 Y E2q “ P pE1q ` P pE2q.
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3. We have P pSq “ 1.

• Many other properties follow from these rules, such as the principle of inclusion-exclusion,
which says that for general events E1, E2 Ď S we have

P pE1 Y E2q “ P pE1q ` P pE2q ´ P pE1 X E2q.

• Also, if E1 is the complement of an event E Ď S then we have P pE1q “ 1´ P pEq. You
should be able to prove this from rules 2 and 3.

• De Morgan’s rules say that

pE1 X E2q
1 “ E11 Y E12,

pE1 Y E2q
1 “ E11 X E12.

You should be able to draw Venn diagrams to illustrate identities like these.

• The binomial coefficients have the following combinatorial interpretations:
ˆ

n

k

˙

“ #pwords of length n with k “H”s and n´ k “T”sq

“ #pways to choose k unordered things without replacement from n thingsq

• The binomial coefficients have an explicit formula:
ˆ

n

k

˙

“
n!

k!ˆ pn´ kq!
“

nˆ pn´ 1q ˆ ¨ ¨ ¨ ˆ pn´ k ` 1q

k ˆ pk ´ 1q ˆ ¨ ¨ ¨ ˆ 1
.

• Ordered things are easier to count:

#pk ordered things with replacementq “ nˆ nˆ ¨ ¨ ¨ ˆ n “ nk,

#pk ordered things without replacementq “ nˆ pn´ 1q ˆ ¨ ¨ ¨ ˆ pn´ k ` 1q “
n!

pn´ kq!
.

• We can remove order by dividing by the number of orderings:

#pk unordered things w/o replacementq “
#pk ordered things w/o replacementq

#pways to order k thingsq

“
n!{pn´ kq!

k!

• More generally, the number of words containing k1 copies of the letter “a1,” k2 copies of
the letter “a2,” . . . and ks copies of the letter “as” is

ˆ

k1 ` k2 ` ¨ ¨ ¨ ` ks
k1, k2, . . . , ks

˙

“
pk1 ` k2 ` ¨ ¨ ¨ ` ksq!

k1!ˆ k2!ˆ ¨ ¨ ¨ ˆ ks!

Example: How many permutations of the word “mississippi”?
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• These numbers are called “multinomial coefficients” because of the multinomial theorem:

pa1 ` a2 ` ¨ ¨ ¨ ` asq
n “

ÿ

ˆ

n

k1, k2, . . . , ks

˙

ak11 ak22 ¨ ¨ ¨ a
ks
s ,

where the sum is over all possible choices of k1, k2, . . . , ks such that k1`k2`¨ ¨ ¨`ks “ n.

• I know these general formulas look intimidating. It’s more important that you can apply
the formulas to problems such as the homework exercises.

• Consider any two events A,B Ď S. The conditional probability

P pA|Bq “ “probability of A given B, ”

“ “probabiliy that A happens, assuming that B happens, ”

is defined by

P pAXBq “ P pBq ¨ P pA|Bq

P pA|Bq “ P pAXBq{P pBq.

• Bayes’ Rule. The probabilities P pA|Bq and P pB|Aq are related by

P pAq ¨ P pB|Aq “ P pAXBq “ P pBq ¨ P pA|Bq,

hence

P pB|Aq “
P pBqP pA|Bq

P pAq
.

• Total Probability. Let B1, B2, . . . , Bm be a partition of the sample space. Then for
any event A we have

P pAq “ P pAXB1q ` P pAXB2q ` ¨ ¨ ¨P pAXBmq

“ P pB1qP pB1|Aq ` P pB2qP pA|B2q ` ¨ ¨ ¨ ` P pBmqP pA|Bmq.

• Bayes and Total Probability. Furthermore, the “backwards” probability P pBk|Aq is
related to the “forwards” probabilities P pA|B1q, . . . , P pA|Bmq by

P pBk|Aq “
P pBkqP pA|Bkq

P pAq

“
P pBkqP pA|Bkq

P pB1qP pB1|Aq ` P pB2qP pA|B2q ` ¨ ¨ ¨ ` P pBmqP pA|Bmq
.

Oct 12

We discussed the solutions to Exam1. The students had the most difficulty with Problem 5
so we spent most of our time on this problem.
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Problem 5 from Exam1A. A diagnostic test is administered to a random person to deter-
mine if they have a certain disease. Consider the events:

T “ “the test returns positive,”

D “ “the person has the disease.”

Suppose that the test has the following “false positive” and “false negative” probabilities:

P pT |D1q “ 0.03 and P pT 1|Dq “ 0.02.

(a) Compute the probabilities P pT |Dq and P pT 1|D1q.

Solution: We can think of these as the “true positive” and “true negative” probabilities. In
other words, these are the probabilities that the test gives an accurate result in the two cases
that the person has or does not have the disease. For example, suppose we know for certain
that the patient does have the disease. In this case, the probability of a negative result is
given to us as

P pT 1|Dq “ 0.02 “ 2%,

so it seems reasonable that the probability of a positive result is

P pT |Dq “ 1´ P pT 1|Dq “ 1´ 0.02 “ 0.98 “ 98%.

In other words, it seems reasonable that

P pT |Dq ` P pT 1|Dq “ 1.

If you’re not comfortable with that, here is a proof from the definitions. First note that the
event D is partitioned into two pieces by the complementary events T, T 1:

D “ pT XDq \ pT 1 XDq

P pDq “ P pT XDq ` P pT 1 XDq.

Then we apply the definition of conditional probability:

P pDq “ P pT XDq ` P pT 1 XDq

P pDq “ P pDqP pT |Dq ` P pDqP pT 1|Dq

P pDq “ P pDq ¨
“

P pT |Dq ` P pT 1|Dq
‰

.

And finally we divide both sides by the number P pDq to obtain

1 “ P pT |Dq ` P pT 1|Dq.

Many students did some version of this computation in their rough work. A more general
way to think about this is that the function P p´|Dq that sends any event E to the number
P pE|Dq satisfies Kolomogorov’s three rules for a probability measure:
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1. We have P pE|Dq ě 0 for all E Ď S.

2. For all events E1, E2 Ď S with E1 X E2 “ H we have

P pE1 Y E2|Dq “ P pE1|Dq ` P pE2|Dq.

3. We have P pS|Dq “ 1.

Therefore the function P p´|Dq must also satisfy the secondary rules such as

P pE1|Dq “ 1´ P pE|Dq.

///

For the same reasons we know that P p´|D1q is a probability measure and hence we must have

P pT 1|D1q “ 1´ P pT |Dq

“ 1´ 0.03 “ 0.97 “ 97%.

(b) Assume that 10% of the population has this disease, i.e., that P pDq “ 0.1. What is the
probability that a random person will test positive?

Solution: We are looking for the probabiliy P pT q. The way we did this in class is with the
“law of total probability”:

P pT q “ P pDqP pT |Dq ` P pD1qP pT |D1q.

But let me show you a more intuitive view of the problem. In retrospect, I wish I had presented
it this way in class.

We can think of the experiment as a two step branching process.

• First, the patient either has or does not have the disease.

• Then, the test returns positive with certain probabilities, depending on whether the
patient has the disease.

And here is a picture of the process:
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In accordance with the “multiplication principle” (otherwise known as the definition of “condi-
tional probability”) we multiply the probabilities along each branch to obtain the probabilites
of the four possible outcomes. Observe that these four probabilities add to 1, as they should:

p0.098` 0.002q ` p0.027` 0.873q “ 0.1` 0.9 “ 1.

To compute the probability of T we first circle the branches that correspond to T :
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And then we add up the probabilities:

P pT q “ p0.1qp0.98q ` p0.9qp0.03q “ 0.098` 0.027 “ 0.125 “ 12.5%

(c) Suppose that a random person is tested and the test returns positive. What is the
probability that this person actually has the disease?

Solution: We are looking for the probability P pD|T q, which can be interpreted as reading the
branching process backwards: Assuming that the second branch was labeled T , what is the
probability that the first branch was labeled D?

The total amount of probability corresponding to T branches is P pT q “ 0.098`0.027 “ 0.125,
and the portion of this that crossed a D branch is 0.098. Therefore we obtain the ratio

P pD|T q “
0.098

0.098` 0.027
“ 0.784 “ 78.4%.

This way of thinking agrees with the boring application of Bayes’ Theorem:

P pD|T q “
P pDqP pT |Dq

P pDqP pT |Dq ` P pD1qP pT |D1q
.
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