
Math 224 Fall 2017
Homework 6 Drew Armstrong

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zim-
merman:

• Section 7.1, Exercises 2, 4, 7
• Section 7.3, Exercises 1, 6, 8(a,b)

Solutions to Book Problems.

7.1-2. A random sample of size 8 from N(µ, σ2 = 72) yielded the sample mean X = 85.
Since this is an unrealistic textbook problem, the exact value of the population standard
deviation is given to us:

σ =
√

72 = 6
√

2 ≈ 8.485.

Thus for any probability value 0 < α < 1 we obtain an exact (1− α)100% confidence interval
for the population mean µ:

P

(
X − zα/2 ·

σ√
n
< µ < X − zα/2 ·

σ√
n

)
= 1− α,

P

(
85− zα/2 ·

√
72√
8
< µ < 85− zα/2 ·

√
72√
8

)
= 1− α,

P
(
85− zα/2 · 3 < µ < 85− zα/2 · 3

)
= 1− α,

Use this to find the following confidence intervals:

(a) (1− α)100% = 99%. Answer:

P (85− 2.575 · 3 < µ < 85− 2.575 · 3) = 99%,

P (77.275 < µ < 92.725) = 99%.

(b) (1− α)100% = 95%. Answer:

P (85− 1.96 · 3 < µ < 85− 1.96 · 3) = 95%,

P (79.12 < µ < 90.88) = 95%.

(c) (1− α)100% = 90%. Answer:

P (85− 1.645 · 3 < µ < 85− 1.645 · 3) = 90%,

P (80.065 < µ < 89.935) = 90%.

(d) (1− α)100% = 80%. Answer:

P (85− 1.28 · 3 < µ < 85− 1.28 · 3) = 80%,

P (81.16 < µ < 88.84) = 80%.
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7.1-4. Let X be the weight in grams of a “52-gram” snack pack of candies. Assume that
the distribution of X is N(µ, σ2 = 4). A random sample of n = 10 observations of X yielded
the following samples X1, . . . , X10:

55.95 56.54 57.58 55.13 57.48
56.06 59.93 58.30 52.57 58.46

(a) Give a point estimate for µ. Answer: We will use the sample mean

X =
1

10

∑
i

Xi = 56.8.

(b) Find the endpoints for a 95% confidence interval for µ. Solution: Since the standard
deviation is known1 (σ = 2) we have the exact confidence interval

P

(
X − 1.96 · σ√

n
< µ < X + 1.96 · σ√

n

)
= 95%,

P

(
56.8− 1.96 · 2√

10
< µ < 56.8 + 1.96 · 2√

10

)
= 95%,

P (56.8− 1.24 < µ < 56.8 + 1.24) = 95%,

P (55.56 < µ < 58.04) = 95%.

(c) On the basis of these very limited data, estimate P (X < 52). Solution: Using our
estimate for µ tells us that X ≈ N(56.8, 4), and hence

X − 56.8

2
≈ N(0, 1).

Therefore we have

P (X < 52) = P (X − 56.8 < −4.8)

= P

(
X − 56.8

2
< −2.4

)
≈ Φ(−2.4) = 1− Φ(2.4) = 1− 0.9918 = 0.82%.

Not very likely.

7.1-7. Thirteen tons of cheese,2 including “22-pound” wheels (label weight), is stored in
some old gypsum mines. A random sample of n = 9 of these wheels was weighed yielding
the results X1, X2, . . . , X9 as shown in the following table. Assuming that the distribution of
weights is N(µ, σ2), use these data to find a 98% confidence interval for µ.

Solution: We use the following table to compute the sample mean X = 1
9

∑9
i=1Xi as well

as the values (Xi −X)2:

Xi 21.50 18.95 18.55 19.40 19.15 22.35 22.90 22.20 23.10

X 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9

(Xi −X)2 0.36 3.8025 5.5225 2.25 3.0625 2.1025 4 1.69 4.84

1If the standard deviation were unknown then since the number of samples is small we would need to use
a t distribution instead of a normal distribution.
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Then we compute the sample standard deviation

S =

√√√√ 1

9− 1

9∑
i=1

(Xi −X)2 = 1.858.

Since the underlying distribution of the weights Xi is normal we know that the random
variable (X − µ)/(S/

√
9) has a t distribution with 9 − 1 = 8 degrees of freedom. To find a

(1 − α)100% = 95% confidence interval for µ we look in the table on page 496 to find the
critical value

tα/2(8) = t0.025(8) = 2.306.

Then we obtain the confidence interval

P

(
X − tα/2(n− 1) · S√

n
< µ < X + tα/2(n− 1) · S√

n

)
= 1− α,

P

(
20.9− 2.306 · 1.858

3
< µ < 20.9 + 2.306 · 1.858

3

)
= 95%,

P (20.9− 1.428 < µ < 20.9 + 1.428) = 95%,

P (19.47 < µ < 22.33) = 95%.

This agrees with the answer in the back of the book.

7.3-1. Let p be the proportion of flawed toggle levers3 that a certain machine shop manu-
factures. In order to estimate p a random sample of 642 levers was selected and it was found
that 24 of them were flawed.

(a) Give a point estimate for p. Solution: We will use the sample mean

p̂ = X =
X

n
=

24

642
= 3.74%.

In parts (b), (c) and (d) we will use three different formulas to compute 95% intervals for p.

(b) Since n = 642 is relatively large we can use the simple formula

p̂± zα/2

√
p̂(1− p̂)

n

with α = 0.05. By substituting p̂ = 0.0374, n = 642 and zα/2 = 1.96 we obtain

0.0374± 1.96 ·
√

(0.0374)(1− 0.0374)

642
= 3.74%± 1.47%.

(c) We get a more accurate answer by using the following formula from page 319:

p̂+ z2α/2/(2n)± zα/2
√
p̂(1− p̂)/n+ z2α/2/(4n

2)

1 + z2α/2/n

By substituting p̂ = 0.0374, n = 642 and zα/2 = 1.96 we obtain

0.0374 + (1.96)2/(2 · 642)± 1.96 ·
√

(0.0374)(1− 0.0374)/642 + (1.96)2/(4 · (642)2)

1 + (1.96)2/642

= 4.01%± 1.49%.
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(d) Since 3.74% is rather close to 0% we should also try the formula from page 321 which
works when p is close to 0 or 1. For this we use the biased estimator

p̃ =
X + 2

n+ 4
=

24 + 2

642 + 4
= 4.02%.

Then we will use the confidence interval p̃ ± zα/2
√
p̃(1− p̃)/(n+ 4). By substituting

p̃ = 0.0402, n = 642 and zα/2 = 1.96 we obtain

0.0402± 1.96 ·
√

(0.0402)(1− 0.0402)

642 + 4
= 4.02%± 1.52%.

We observe that the result is closer to the more accurate formula in part (c), which
confirms that the strange estimator p̃ is good for extreme values of p.

(e) Finally, since p is very small, we might be interested in a one-sided confidence interval
for p. To compute a (1−α)100% upper bound for p we can use any of the above three
formulas to obtain

P (p < old upper bound with zα/2 replaced by zα) ≈ 1− α.

To compute a 95% upper bound for p we will substitute z0.05 = 1.645 in the place of
z0.025 = 1.96. By doing this in all three formulas we obtain upper bounds

4.97%, 5.18% and 5.29%,

respectively. I see that the back of the textbook reports the value 4.97%, which means
that they used the dumbest formula.

7.3-6. Let p equal the proportion of Americans who select jogging as one of their recre-
ational activities. If 1497 out of a random sample of 5757 selected jogging, find an approximate
98% confidence interval for p.

Solution: Since the sample size n = 5757 is large we will use the most basic version of the
confidence interval:

P

(
p̂− zα/2 ·

√
p̂(1− p̂)

n
< p < p̂+ zα/2 ·

√
p̂(1− p̂)

n

)
≈ 1− α.

By substituting p̂ = 1497/5757 = 0.26, n = 5757 and 1− α = 98% we obtain

P

(
0.26− 2.33 ·

√
(0.26)(0.74)

5757
< p < 0.26 + 2.33 ·

√
(0.26)(0.74)

5757

)
≈ 95%,

P (26%− 1.35% < p < 26% + 1.35%) ≈ 95%,

P (24.66% < p < 27.35%) ≈ 95%.

7.3-8(a,b). A proportion, p, that many opinion polls estimate is the number of Americans
who sould say yes to the question, “If something were to happen to the president of the United
States, do you think that the vice president would be qualified to take over as president?” In
one such random sample of 1022 adults, 388 said yes.

(a) On the basis of the given data, find a point estimate of p. Answer:

p̂ =
388

1022
= 37.8%.
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(b) Find an approximate 90% confidence interval for p. Answer: Again, since n = 1022 is
largre we use the most basic confidence interval. By substituting p̂ = 0.3796, n = 1022
and 1− α = 90% we obtain

P

(
p̂− zα/2 ·

√
p̂(1− p̂)

n
< p < p̂+ zα/2 ·

√
p̂(1− p̂)

n

)
≈ 1− α

P

(
0.378− 1.645 ·

√
(0.378)(0.622))

1022
< p < 0.378 + 1.645 ·

√
(0.378)(0.622)

1022

)
≈ 90%,

P (37.8%− 3.54% < p < 37.8% + 3.54%) ≈ 90%,

P (34.43% < p < 41.5%) ≈ 90%.

Additional Problems.

1. Sample Standard Deviation. Let X1, X2, . . . , Xn be independent samples from an
underlying population with mean µ and variance σ2. We have seen that the sample mean
X = (X1 +X2 + · · ·+Xn)/n is an unbiased estimator for the population mean µ because

E[X] = µ.

The most obvious way to estimate the population variance σ2 is to use the formula

V =
1

n

n∑
i=1

(Xi −X)2.

Unfortunately, you will show that this estimator is biased.

(a) Explain why E[X2
i ] = µ2 + σ2 for each i.

(b) Use the linearity of expectation together with part (a) and the fact that
∑
Xi = nX

to show that

E[V ] =
1

n

(
E[
∑

X2
i ]− 2E[X

∑
Xi] + E[nX

2
]
)

=
1

n

(
n(µ2 + σ2)− nE[X

2
]
)

= µ2 + σ2 − E[X
2
]

(c) Use the formula Var(X) = E[X
2
]− E[X]2 to show that

E[X
2
] = µ2 + σ2/n.

(d) Put everything together to show that

E[V ] =
n− 1

n
· σ2 6= σ2,

hence V is a biased estimator for σ2.

It follows that the weird formula

S2 =
n

n− 1
· V =

1

n− 1

n∑
i=1

(Xi −X)2

satisfies

E[S2] = E

[
n

n− 1
· V
]

=
n

n− 1
· E[V ] =

�n

���n− 1
·�

��n− 1

�n
· σ2 = σ2
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and hence S2 is an unbiased estimator for σ2. We call it the sample variance and we call its
square root S the sample standard deviation. It is a sad fact that S is a biased estimator for
σ but you will have to take more statistics courses if you want to learn about that.

Proof: For part (a) note that E[Xi] = µ and Var(Xi) = σ2 are given to us. Then we obtain

Var(Xi) = E[X2
i ]− E[Xi]

2

E[X2
i ] = E[Xi]

2 + Var(Xi) = µ2 + σ2.

For part (c) we first note that E[X] = µ and Var(X) = σ2/n. (You’d better remember why
this is true for Exam3.) Then we obtain

Var(X) = E[X
2
]− E[X]2

E[X
2
] = E[X]2 + Var(X) = µ2 + σ2/n.

Then for parts (b) and (d) we first note that
∑n

i=1Xi = nX. Then we have

E[V ] = E

[
1

n

n∑
i=1

(Xi −X)2

]

=
1

n

n∑
i=1

E[X2
i − 2XXi +X

2
]

=
1

n

(
n∑
i=1

E[X2
i ]− 2E[X

n∑
i=1

Xi] +
n∑
i=1

X
2

)

=
1

n

(
nE[X2

i ]− 2E[XnX] + nE[X
2
]
)

=
1

n

(
nE[X2

i ]− 2nE[X
2
] + nE[X

2
]
)

=
1

n

(
nE[X2

i ]− nE[X
2
]
)

= E[X2
i ]− E[X

2
]

and from parts (a) and (c) we obtain

E[V ] = E[X2
i ]− E[X

2
] = (µ2 + σ2)− (µ2 + σ2/n) = σ2 − σ2/n =

n− 1

n
· σ2.

[Remark: We have shown that the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

is an unbiased estimator for the population variance, but we have said nothing more about its
distribution. If you go further in statistics you will learn the following fact: If the underlying
distribution is normal then the random variable

n− 1

σ2
S2 =

n

σ2
V

has a “chi squared distribution with n− 1 degrees of freedom,” whatever that means.]


