Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

- Section 3.1, Exercises 3, 10.
- Section 3.3, Exercises 2, 3, 10, 11.
- Section 5.6, Exercises 2, 4.
- Section 5.7, Exerciese 4, 14.

Solutions to Book Problems.

3.1-3. Customers arrive randomly at a bank teller's window. Given that a customer arrived in a certain 10-minute period, let X be the exact time within the 10 minutes that the customer arrived. We will assume that X is $U(0,10)$, i.e., that X is uniformly distributed on the real interval $[0,1] \subseteq \mathbb{R}$.
(a) Find the pdf of X. Solution:

$$
f_{X}(x)= \begin{cases}1 / 10 & \text { if } 0 \leq x \leq 10 \\ 0 & \text { otherwise }\end{cases}
$$

Here is a picture (not to scale):

(b) Compute $P(X \geq 8)$. Solution: We could compute an integral:

$$
P(X \geq 8)=\int_{8}^{10} 1 / 10 d x=x /\left.10\right|_{8} ^{10}=10 / 10-8 / 10=2 / 10=1 / 5
$$

Or we could just recognize that this is the area of a rectangle with height $1 / 10$ and width 2:

(c) Compute $P(2 \leq X<8)$. Solution: Skipping the integral, we'll compute this as the area of a rectangle with width 2 and height $1 / 10$:

Remark: For general $0 \leq a \leq b \leq 10$ we will have $P(a \leq X \leq b)=b-a$.
(d) Compute the expected value $E[X]$. Solution: We have

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{10} x / 10=x^{2} /\left.20\right|_{0} ^{10}=100 / 20-0 / 20=5
$$

Indeed, this agrees with our intuition that the distribution is symmetric about $x=5$.
(e) Compute the variance $\operatorname{Var}(X)$. Solution: We could first compute $E\left[X^{2}\right]$ first, but instead we'll go directly from the definition. Since $\mu=5$ we have

$$
\begin{aligned}
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right] & =\int_{-\infty}^{\infty}(x-\mu)^{2} f_{X}(x) d x \\
& =\int_{0}^{10}(x-5)^{2} / 10 d x \\
& =\int_{0}^{10}\left(x^{2}-10 x+25\right) / 10 d x \\
& =\left(x^{3} / 3-10 x^{2} / 2+25 x\right) /\left.10\right|_{0} ^{10} \\
& =(1000 / 3-1000 / 2+250) / 10 \\
& =(2000 / 6-3000 / 6+1500 / 6) / 10 \\
& =50 / 6 .
\end{aligned}
$$

Indeed, if $X \sim U(a, b)$ then the front of the book says that $\operatorname{Var}(X)=(b-a)^{2} / 12$, which agrees with our answer when $a=0$ and $b=10$.
3.1-10. The pdfi of X is $f(x)=c / x^{2}$ with support $1<x<\infty$. (This means that the function is zero outside of this range.)

[^0](a) Calculate the value of c so that $f(x)$ is a pdf. Solution: We must have
\[

$$
\begin{aligned}
1 & =\int_{1}^{\infty} f(x) d x \\
& =\int_{1}^{\infty} c / x^{2} d x \\
& =-c /\left.x\right|_{0} ^{\infty} \\
& =0-(-c / 1) \\
& =c .
\end{aligned}
$$
\]

(b) Show that $E[X]$ is not finite. Solution: If the expected value existed then it would satisfy the formula

$$
E[X]=\int_{1}^{\infty} x f(x) d x=\int_{1}^{\infty} 1 / x d x
$$

But the antiderivative of $1 / x$ is the natural $\operatorname{logarithm} \log (x)$, so that

$$
\int_{1}^{\infty} 1 / x d x=\left[\lim _{x \rightarrow \infty} \log (x)\right]-\log (1)=\left[\lim _{x \rightarrow \infty} \log (x)\right]=\infty .
$$

If the random variable X represents some kind of waiting time, then we should expect to wait forever!
[Moral of the Story: The expected value and variance are useful tools. However: (1) Some continuous random variables X have an infinite expected value $E[X]=\infty$. (2) Some random variables with finite expected value $E[X]<\infty$ still have infinite variance $\operatorname{Var}(X)=\infty$. So be careful.]
3.3-2. If $Z \sim N(0,1)$ has a standard normal distribution, compute the following probabilities. We will use the general formulas

- $P(a \leq Z \leq b)=\Phi(b)-\Phi(a)$
- $\Phi(-z)=1-\Phi(z)$
and we will look up the values for $\Phi(z)$ in the table on page 494 of the textbook.
(a)

$$
P(0 \leq Z \leq 0.87)=\Phi(0.87)-\Phi(0)=0.8078-0.5000=30.78 \%
$$

(b)

$$
\begin{aligned}
P(-2.64 \leq Z \leq 0) & =\Phi(0)-\Phi(-2.64) \\
& =\Phi(0)-[1-\Phi(2.64)] \\
& =\Phi(2.64)+\Phi(0)-1 \\
& =0.9959+0.5000-1=49.59 \% .
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(-2.13 \leq Z \leq-0.56) & =\Phi(-0.56)-\Phi(-2.13) \\
& =[1-\Phi(0.56)]-[1-\Phi(2.13)] \\
& =\Phi(2.13)-\Phi(0.56) \\
& =0.9834-0.7123=27.11 \% .
\end{aligned}
$$

(d)

$$
\begin{aligned}
P(|Z|>1.39) & =P(Z>1.39)+P(Z<-1.39) \\
& =1-\Phi(1.39)+\Phi(-1.39) \\
& =1-\Phi(1.39)+[1-\Phi(1.39)] \\
& =2[1-\Phi(1.39)]=2[1-0.9177]=16.46 \% .
\end{aligned}
$$

(e)

$$
P(Z<-1.62)=\Phi(-1.62)=1-\Phi(1.62)=1-0.9474=5.26 \%
$$

(f)

$$
\begin{aligned}
P(|Z|>1) & =P(Z>1)+P(Z<-1) \\
& =1-\Phi(1)+\Phi(-1) \\
& =1-\Phi(1)+[1-\Phi(1)] \\
& =2[1-\Phi(1)]=2[1-0.8413]=31.74 \% .
\end{aligned}
$$

(g) After parts (d) and (f) we observe the general pattern:

$$
P(|Z|>z)=2[1-\Phi(z)] .
$$

Therefore we have

$$
P(|Z|>2)=2[1-\Phi(2)]=2[1-0.9772]=4.56 \%
$$

(h) and also

$$
P(|Z|>3)=2[1-\Phi(3)]=2[1-0.9987]=2.6 \% .
$$

3.3-3. Suppose $Z \sim N(0,1)$. Find values of c to satisfy the following equations.
(a) $P(Z \geq c)=0.025$. Solution: We are looking for c such that

$$
\begin{aligned}
P(Z \geq c) & =0.025 \\
1-P(Z \leq c) & =0.025 \\
1-\Phi(c) & =0.025 \\
0.9750 & =\Phi(c) .
\end{aligned}
$$

My trusty table tells me that $\Phi(1.96)=0.975$, and hence $c=1.96$.
(b) $P(|Z| \leq c)=0.95$. Solution: We are looking for c such that

$$
\begin{aligned}
P(|Z| \leq c) & =0.95 \\
P(-c \leq Z \leq c) & =0.95 \\
\Phi(c)-\Phi(-c) & =0.95 \\
\Phi(c)-[1-\Phi(c)] & =0.95 \\
2 \Phi(c)-1 & =0.95 \\
\Phi(c) & =1.95 / 2=0.9750 .
\end{aligned}
$$

So the answer is the same as for part (a), i.e., $c=1.96$.
(c) $P(Z>c)=0.05$. Solution: Following the same steps as in part (a) gives

$$
\begin{aligned}
P(Z>c) & =0.05 \\
1-P(Z>c) & =0.05 \\
1-\Phi(c) & =0.05 \\
0.9500 & =\Phi(c) .
\end{aligned}
$$

We look up in the table that $\Phi(1.64)=0.9495$ and $\Phi(1.65)=0.9505$. Therefore we must have $\Phi(1.645) \approx 0.9500$ and hence $c \approx 1.645$.
(d) $P(|Z| \leq c)=0.90$. Solution: Following the same steps as in part (b) gives

$$
\begin{aligned}
P(|Z| \leq c) & =0.90 \\
P(-c \leq Z \leq c) & =0.90 \\
\Phi(c)-\Phi(-c) & =0.90 \\
\Phi(c)-[1-\Phi(c)] & =0.90 \\
2 \Phi(c)-1 & =0.90 \\
\Phi(c) & =1.90 / 2=0.9500 .
\end{aligned}
$$

So the answer is the same as for part (c), i.e., $c \approx 1.645$.
3.3-10. Let $X \sim N\left(\mu, \sigma^{2}\right)$ be normal and for any real numbers $a, b \in \mathbb{R}$ with $a \neq 0$ define the random variable

$$
Y=a X+b .
$$

By properties of expectation and variance we have

$$
E[Y]=E[a X+b]=a E[X]+b=a \mu+b
$$

and

$$
\operatorname{Var}(Y)=\operatorname{Var}(a X+b)=\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)=a^{2} \sigma^{2}
$$

I claim, furthermore thatn Y is also normal, i.e., that

$$
Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

Proof: To show that Y is normal, we want to show for any real numbers $y_{1} \leq y_{2}$ that

$$
\begin{equation*}
P\left(y_{1} \leq Y \leq y_{2}\right)=\int_{w=y_{1}}^{w=y_{2}} \frac{1}{\sqrt{2 \pi a^{2} \sigma^{2}}} e^{-(w-a \mu-b)^{2} / 2 a^{2} \sigma^{2}} d w . \tag{?}
\end{equation*}
$$

To show this, we can use the fact that X is normal to obtain ${ }^{2}$

$$
\begin{align*}
P\left(y_{1} \leq Y \leq y_{2}\right) & =P\left(y_{1} \leq a X+b \leq y_{2}\right) \\
& =P\left(y_{1}-b \leq a X \leq y_{2}-b\right) \\
& =P\left(\frac{y_{1}-b}{a} \leq X \leq \frac{y_{2}-b}{a}\right) \\
& =\int_{x=\left(y_{1}-b\right) / a}^{x=\left(y_{1}-b\right) / a} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x . \tag{*}
\end{align*}
$$

[^1]To show that the expressions (*) and (?) are equal we will make the substitution

$$
\begin{aligned}
w & =a x+b, \\
d w & =a \cdot d x .
\end{aligned}
$$

Then we observe that

$$
\begin{aligned}
\int_{w=y_{1}}^{w=y_{2}} \frac{1}{\sqrt{2 \pi a^{2} \sigma^{2}}} e^{-(w-a \mu-b)^{2} / 2 a^{2} \sigma^{2}} d w & =\int_{x=\left(y_{1}-b\right) / a}^{x=\left(y_{1}-b\right) / a} \frac{1}{\sqrt{2 \pi a^{2} \sigma^{2}}} e^{-(a x+b-a \mu-\not)^{2} / 2 a^{2} \sigma^{2}} a \cdot d x \\
& =\int_{x=\left(y_{1}-b\right) / a}^{x=\left(y_{1}-b\right) / a} \frac{\not x}{\sqrt{2 \pi \alpha^{2} \sigma^{2}}} e^{-\ell^{2}(x-\mu)^{2} / 2 \ell^{2} \sigma^{2}} d x \\
& =\int_{x=\left(y_{1}-b\right) / a}^{x=\left(y_{1}-b\right) / a} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
\end{aligned}
$$

as desired.
[Remark: Sadly this proof is not very informative. We went to the trouble because we are very interested in the special case when $a=1 / \sigma$ and $b=-\mu / \sigma$. In this case the result becomes

$$
X \sim N\left(\mu, \sigma^{2}\right) \quad \Longrightarrow \quad Y=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

We will use this fact in almost every problem below.]
3.3-11. A candy maker produces mints that have a label weight of 20.4 grams. We assume that the distribution of the weights of these mints is $N(21.37,0.16)$.
(a) Let X denote the weight of a single mint selected at random from the production line. Find $P(X>22.07)$.
Solution: Since $X \sim N(21.37,0.16)$ we have $\mu=21.37$ and $\sigma^{2}=0.16$, hence $\sigma=0.4$. It follows from the remark just above that $(X-21.37) / 0.4$ has a standard normal distribution and hence

$$
\begin{aligned}
P(X>22.07) & =P(X-21.37>0.7) \\
& =P\left(\frac{X-21.37}{0.4}>1.75\right) \\
& =1-P\left(\frac{X-21.37}{0.4} \leq 1.75\right) \\
& =1-\Phi(1.75)=1-0.9599=4.01 \% .
\end{aligned}
$$

(b) Suppose that 15 mints are selected independently and weighed. Let Y be the number of these mints that weigh less than 20.857 grams. Find $P(Y \leq 2)$.

Solution: Let $X_{1}, X_{2}, \ldots, X_{15}$ be the weights of the 15 randomly selected mints. By assumption each of these weights has distribution $N(21.37,0.16)$ so that each random variable ($X_{i}-21.37$) /0.4 is standard normal. For each i we have

$$
\begin{aligned}
P\left(X_{i}<20.875\right) & =P\left(X_{i}-21.37<-0.531\right) \\
& =P\left(\frac{X_{i}-21.37}{0.4}<-1.2825\right) \\
& \approx \Phi(-1.28)=1-\Phi(1.28)=1-0.8995=10.05 \% .
\end{aligned}
$$

In other words, we can think of each of the 15 selected mints as a coin flip where "heads" means "the weight is less than 20.857 " and the probability of heads is approximately 10%. Then Y is a binomial random variable with parameters $n=15$ and $p \approx 0.1$ and we conclude that

$$
\begin{aligned}
P(Y \leq 2) & \approx \sum_{k=0}^{2}\binom{15}{k}(0.1)^{k}(0.9)^{15-k} \\
& =(0.9)^{15}+15 \cdot(0.1)(0.9)^{14}+105 \cdot(0.1)^{2}(0.9)^{13} \approx 81.59 \%
\end{aligned}
$$

In other words, there is an 80% chance that no more than 2 out of every 15 mints will weigh less than 20.857 grams. I don't know if that's good.
5.6-2. Let $Y=X_{1}+X_{2}+\cdots+X_{15}$ be the sum of a random sample of size 15 from a distribution whose pdf is $f(x)=(3 / 2) x^{2}$ with support $-1<x<1$. Using this pdf, one can use a computer to show that $P(-0.3 \leq Y \leq 1.5)=0.22788$. On the other hand, we can use the Central Limit Theorem to approximate this probability.

Solution: The distribution in question looks like this:

Since the distribution is symmetric about zero, we conclude without doing any work that $\mu=E\left[X_{i}\right]=0$ for each i. To find σ, however, we need to compute an integral. For any i, the variance of X_{i} is defined by

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}\left(X_{i}\right) & =E\left[\left(X_{i}-0\right)^{2}\right] \\
& =E\left[X_{i}^{2}\right] \\
& =\int_{-1}^{1} x^{2} \cdot f(x) d x \\
& =\int_{-1}^{1} x^{2} \cdot \frac{3}{2} x^{2} d x \\
& =\frac{3}{2} \int_{-1}^{1} x^{4} d x \\
& =\left.\frac{3}{2} \cdot \frac{x^{5}}{5}\right|_{-1} ^{1}=\frac{3}{2} \cdot \frac{1}{5}-\frac{3}{2} \cdot \frac{(-1)^{5}}{5}=\frac{6}{10}=\frac{3}{5} .
\end{aligned}
$$

It follows that Y has mean and variance given by

$$
\mu_{Y} E[Y]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{15}\right]=0+0+\cdots+0=0
$$

and

$$
\sigma_{Y}^{2}=\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{15}\right)=\frac{3}{5}+\frac{3}{5}+\cdots+\frac{3}{5}=15 \cdot \frac{3}{5}=9
$$

By the Central Limit Theorem, the sum Y is approximately normal and hence $\left(Y-\mu_{Y}\right) / \sigma_{Y}=$ $Y / 3$ is approximately standard normal. We conclude that

$$
\begin{aligned}
P(-0.3 \leq Y \leq 0.5) & =P\left(\frac{-0.3}{3} \leq \frac{Y}{3} \leq \frac{1.5}{3}\right) \\
& =P\left(-0.1 \leq \frac{Y}{3} \leq 0.5\right) \\
& \approx \Phi(0.5)-\Phi(-0.1) \\
& =\Phi(0.5)-[1-\Phi(0.1)] \\
& =\Phi(0.5)+\Phi(0.1)-1 \\
& =0.6915+0.5398-1=23.13 \% .
\end{aligned}
$$

That's reasonably close to the exact value 22.788%, I guess. We would get a more accurate result by taking more than 15 samples.
5.6-4. Approximate $P(39.75 \leq \bar{X} \leq 41.25)$, where \bar{X} is the mean of a random sample of size 32 from a distribution with mean $\mu=40$ and $\sigma^{2}=8$.

Solution: In general the sample mean is defined by $\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{n}\right) / n$, where each X_{i} has $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. From this we compute that

$$
E[\bar{X}]=\frac{1}{n}\left(E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]\right)=\frac{1}{n}(\mu+\mu+\cdots+\mu)=\frac{n \mu}{n}=\mu
$$

and

$$
\operatorname{Var}(\bar{X})=\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)\right)=\frac{1}{n^{2}}\left(\sigma^{2}+\cdots+\sigma^{2}\right)=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n} .
$$

The Central Limit Theorem says that if n is large then \bar{X} is approximately normal:

$$
\bar{X} \approx N\left(\mu, \sigma^{2} / n\right)
$$

In the case $n=32, \mu=40$ and $\sigma^{2}=8$ we obtain

$$
\bar{X} \approx N(40,8 / 32)=N\left(40,(1 / 2)^{2}\right)
$$

It follows that $(\bar{X}-40) /(1 / 2)=2(\bar{X}-40)$ is approximately $N(0,1)$ and hence

$$
\begin{aligned}
P(39.75 \leq \bar{X} \leq 41.25) & =P(-0.25 \leq \bar{X}-40 \leq 1.25) \\
& =P(-0.5 \leq 2(\bar{X}-40) \leq 2.5) \\
& \approx \Phi(2.5)-\Phi(-0.5) \\
& =\Phi(2.5)-[1-\Phi(0.5)] \\
& =\Phi(2.5)+\Phi(0.5)-1 \\
& =0.9938+0.6915-1=68.53 \% .
\end{aligned}
$$

5.7-4. Let X equal the number out of $n=48$ mature aster seeds that will germinate when $p=0.75$ is the probability that a particular seed germinates. Approximate $P(35 \leq X \leq 40)$.

Solution: We observe that X is a binomial random variable with pmf

$$
P(X=k)=\binom{48}{k}(0.75)^{k}(0.25)^{48-k}
$$

My laptop tells me that the exact probability is

$$
P(35 \leq X \leq 40)=\sum_{k=35}^{40} P(X=k)=\sum_{k=35}^{40}\binom{48}{k}(0.75)^{k}(0.25)^{48-k}=63.74 \% .
$$

If we want to compute an approximation by hand then we should use the de Moivre-Laplace Theorem (a special case of the Central Limit Theorem), which says that X is approximately normal with mean $n p=36$ and variance $\sigma^{2}=n p(1-p)=9$, i.e., standard deviation $\sigma=3$. Let X^{\prime} be a continuous random variable with $X^{\prime} \sim N\left(36,3^{2}\right)$. Here is a picture comparing the probability mass function of the discrete variable X to the probability density function of the continuous variable X^{\prime} :

The picture suggests that we should use the following continuity correction 3^{3}

$$
P(35 \leq X \leq 40) \approx P\left(34.5 \leq X^{\prime} \leq 40.5\right) .
$$

And then because $\left(X^{\prime}-36\right) / 3$ is standard normal we obtain

$$
\begin{aligned}
P\left(34.5 \leq X^{\prime} \leq 40.5\right) & =P\left(-1.5 \leq X^{\prime}-36 \leq 4.5\right) \\
& =P\left(-0.5 \leq \frac{X^{\prime}-36}{3} \leq 1.5\right) \\
& =\Phi(1.5)-\Phi(-0.5) \\
& =\Phi(1.5)-[1-\Phi(0.5)] \\
& =\Phi(1.5)+\Phi(0.5)-1=0.9332+0.6915-1=62.47 \%
\end{aligned}
$$

Not too bad.
5.7-14. A (fair six-sided) die is rolled 24 independent times. Let X_{i} be the number that appears on the i th roll and let $Y=X_{1}+X_{2}+\cdots+X_{24}$ be the sum of these numbers. The pmf of each X_{i} is given by the following table

$$
\begin{array}{c|c|c|c|c|c|c}
k & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline P\left(X_{i}=k\right) & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6
\end{array}
$$

[^2]So we find that:

$$
\begin{aligned}
E\left[X_{i}\right] & =(1+2+3+4+5+6) / 6=7 / 2, \\
E\left[X_{i}^{2}\right] & =\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right) / 6=91 / 6, \\
\operatorname{Var}\left(X_{i}\right) & =E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2}=91 / 6-(7 / 2)^{2}=35 / 12 .
\end{aligned}
$$

Then the expected value and variance of Y are given by

$$
E[Y]=24 \cdot E\left[X_{i}\right]=24 \cdot \frac{7}{2}=84 \quad \text { and } \quad \operatorname{Var}(Y)=24 \cdot \operatorname{Var}\left(X_{i}\right)=24 \cdot \frac{35}{12}=70
$$

and the Central Limit Theorem tells us that Y is approximately $N(84,70)$. Let Y^{\prime} be a continuous random variable that is exactly $N(84,70)$, so that $\left(Y^{\prime}-84\right) / \sqrt{70}$ has a standard normal distribution.
(a) Compute $P(Y \geq 86)$. Solution:

$$
\begin{aligned}
P(Y \geq 86) & \approx P\left(Y^{\prime} \geq 85.5\right) \\
& =P\left(Y^{\prime}-84 \geq 1.5\right) \\
& \approx P\left(\frac{Y^{\prime}-84}{\sqrt{70}} \geq 0.18\right) \\
& =1-\Phi(0.18)=1-0.5714=42.86 \% .
\end{aligned}
$$

(b) Compute $(P<86)$. Solution: This is the complement of part (a):

$$
P(Y<86)=1-P(Y \geq 86) \approx 1-0.4286=57.14 \%
$$

(c) Compute $P(70<Y \leq 86)$. Solution:

$$
\begin{aligned}
P(70<Y \leq 86) & \approx P\left(70.5 \leq Y^{\prime} \leq 86.5\right) \\
& =P\left(-13.5 \leq Y^{\prime}-84 \leq 2.5\right) \\
& \approx P\left(-1.61 \leq \frac{Y^{\prime}-84}{\sqrt{70}} \leq 0.30\right) \\
& =\Phi(0.30)-\Phi(-1.61) \\
& =\Phi(0.30)-[1-\Phi(1.61)] \\
& =\Phi(0.30)+\Phi(1.61)-1=0.6179+0.9463-1=56.42 \% .
\end{aligned}
$$

Here is a picture explaining the continuity correction that we used in the first step:

Additional Problems.

1. The Normal Curve. Let $\mu, \sigma^{2} \in \mathbb{R}$ be any real numbers (with $\sigma^{2}>0$) and consider the graph of the function

$$
n(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} .
$$

(a) Compute the first derivative $n^{\prime}(x)$ and show that $n^{\prime}(x)=0$ implies $x=\mu$.
(b) Compute the second derivative $n^{\prime \prime}(x)$ and show that $n^{\prime \prime}(\mu)<0$, hence the curve has a local maximum at $x=\mu$.
(c) Show that $n^{\prime \prime}(x)=0$ implies $x=\mu+\sigma$ or $x=\mu-\sigma$, hence the curve has inflections at these points. [The existence of inflections at $\mu+\sigma$ and $\mu-\sigma$ was de Moivre's original motivation for defining the standard deviation.]

Solution: The chain rule tells us that for any function $f(x)$ we have

$$
\frac{d}{d x} e^{f(x)}=e^{f(x)} \cdot \frac{d}{d x} f(x) .
$$

Applying this to the function $n(x)$ gives

$$
n^{\prime}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} \cdot \frac{-1}{2 \sigma^{2}} 2(x-\mu)=\sqrt{\frac{-1}{\sqrt{8 \pi \sigma^{6}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}}} \cdot(x-\mu) .
$$

We observe that the expression inside the box is never zero. In fact, it is always strictly negative. Therefore we have $n^{\prime}(x)=0$ precisely when $(x-\mu)=0$, or, in other words, when $x=\mu$. This tells us that there is a horizontal tangent when $x=\mu$. To determine whether this is a maximum or a minimum we should compute the second derivative. Using the product rule gives

$$
\begin{aligned}
n^{\prime \prime}(x) & =\frac{d}{d x}\left[\frac{-1}{\sqrt{8 \pi \sigma^{6}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} \cdot(x-\mu)\right] \\
& =\frac{-1}{\sqrt{8 \pi \sigma^{6}}} \cdot \frac{d}{d x}\left[e^{-(x-\mu)^{2} / 2 \sigma^{2}} \cdot(x-\mu)\right] \\
& =\frac{-1}{\sqrt{8 \pi \sigma^{6}}} \cdot\left[e^{-(x-\mu)^{2} / 2 \sigma^{2}} \cdot \frac{-1}{2 \sigma^{2}} 2(x-\mu) \cdot(x-\mu)+e^{-(x-\mu)^{2} / 2 \sigma^{2}}\right] \\
& =\frac{-1}{\sqrt{8 \pi \sigma^{6}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} \cdot\left[\frac{-(x-\mu)^{2}}{\sigma^{2}}+1\right] .
\end{aligned}
$$

Then plugging in $x=\mu$ gives

$$
n^{\prime \prime}(\mu)=\frac{-1}{\sqrt{8 \pi \sigma^{6}}}<0,
$$

which implies that the graph of $n(x)$ curves down at $x=\mu$, so it must be a local maximum. Finally, we observe that the boxed formula in the following expression is always nonzero (in fact it is always negative):

$$
n^{\prime \prime}(x)=\begin{array}{|c}
\frac{-1}{\sqrt{8 \pi \sigma^{6}}} \cdot e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
\end{array}\left[\frac{-(x-\mu)^{2}}{\sigma^{2}}+1\right]
$$

Therefore we have $n^{\prime \prime}(x)=0$ precisely when

$$
\begin{aligned}
\frac{-(x-\mu)^{2}}{\sigma^{2}}+1 & =0 \\
\frac{(x-\mu)^{2}}{\sigma^{2}} & =1 \\
(x-\mu)^{2} & =\sigma^{2} \\
x-\mu & = \pm \sigma \\
x & =\mu \pm \sigma .
\end{aligned}
$$

In other words, the graph of $n(x)$ has inflection points when $x=\mu \pm \sigma$. As we observed in the course notes, the height of these inflection points is always around 60% of the height of the maximum. This gives the "bell curve" its distinctive shape:

[^0]: ${ }^{1}$ The textbook is lying here because we don't know yet whether this really is a pdf.

[^1]: ${ }^{2}$ In the third line here we will assume that $a>0$. The proof for $a<0$ is exactly the same except that it will switch the limits of integration.

[^2]: ${ }^{3}$ If you don't do this then you will still get a reasonable answer, it just won't be as accurate.

