Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

- Section 3.1, Exercises 3, 10.
- Section 3.3, Exercises 2, 3, 10, 11.
- Section 5.6, Exercises 2, 4.
- Section 5.7, Exerciese 4, 14.

Additional Problems.

1. The Normal Curve. Let $\mu, \sigma^{2} \in \mathbb{R}$ be any real numbers (with $\sigma^{2}>0$) and consider the graph of the function

$$
n(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

(a) Compute the first derivative $n^{\prime}(x)$ and show that $n^{\prime}(x)=0$ implies $x=\mu$.
(b) Compute the second derivative $n^{\prime \prime}(x)$ and show that $n^{\prime \prime}(\mu)<0$, hence the curve has a local maximum at $x=\mu$.
(c) Show that $n^{\prime \prime}(x)=0$ implies $x=\mu+\sigma$ or $x=\mu-\sigma$, hence the curve has inflections at these points. [The existence of inflections at $\mu+\sigma$ and $\mu-\sigma$ was de Moivre's original motivation for defining the standard deviation.]

