
Math 224 Fall 2017
Homework 4 Drew Armstrong

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zim-
merman:

• Section 2.3, Exercises 16(a,d),18.
• Section 2.4, Exercises 13, 14.
• Section 4.1, Exercises 3, 4.
• Section 4.2, Exercises 3(a).
• Section 5.3, Exercises 2, 5.

Solutions to Book Problems.

2.3-16. Let X be the number of flips of a fair coin that are required to observe the same
face on consecutive flips.

(a) Find the pmf of X. Solution: The event “X = 1” is empty, so that P (X = 1) = 0.
The event “X = 2” consists of the sequences TT and HH so that

“X = 2” = {TT,HH}
P (X = 2) = P (TT ) + P (HH)

= 1/4 + 1/4

= 1/2.

The event “X = 3” consists of the sequences HTT and THH so that

“X = 3” = {HTT, THH}
P (X = 3) = P (HTT ) + P (THH)

= 1/8 + 1/8

= 1/4.

The event “X = 4” consists of the sequences THTT and HTHH so that

“X = 4” = {THTT,HTHH}
P (X = 4) = P (THTT ) + P (HTHH)

= 1/16 + 1/16

= 1/8.

In general, the event “X = k” consists of exactly two sequences:

· · ·HTH︸ ︷︷ ︸
k − 2 flips

TT and · · ·THT︸ ︷︷ ︸
k − 2 flips

HH.

Since the coin is fair, each of these sequences has probability 1/2k, so that

P (X = k) =
1

2k
+

1

2k
=

2

2k
=

1

2k−1
.

The geometric series guarantees that this is, indeed, a probability mass function:

P (X ≥ 2) =

∞∑
k=2

1

2k−1
=

1

2
+

1

4
+

1

8
+ · · · = 1.

1
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(d) Find the values of P (X ≤ 3), P (X ≥ 5) and P (X = 3). Solution: We already saw
that P (X = 3) = 1/4. To find P (X ≤ 3) we add up all the ways this can happen:

P (X ≤ 3) =
∑
k≤3

P (X = k) = P (X = 2) + P (X = 3) =
1

2
+

1

4
=

3

4
.

We can compute P (X ≥ 5) by summing a geometric series:

P (X ≥ 5) =
∞∑
k=5

1/2k−1

= 1/24 + 1/25 + 1/26 + 1/27 + · · ·
= 1/24 · [1 + 1/2 + 1/4 + 1/8 + · · · ]
= 1/24 · 2
= 1/23

= 1/8.

Alternatively, we can compute the probability of the complement:

P (X ≥ 5) = 1− P (X ≤ 4)

= 1− [P (X = 2) + P (X = 3) + P (X = 4)]

= 1− [1/2 + 1/4 + 1/8]

= 1− 7/8

= 1/8.

///

Remark: I didn’t ask you to solve 2.3-16 (b) and (c) because we didn’t talk enough about
moment generating functions in class. Here are the solutions anyway. To compute the mgf of
X we use another geometric series:

MX(t) = E[etX ]

=

∞∑
k=2

etkP (X = k)

=

∞∑
k=2

etk1/2k−1

= et ·
∞∑
k=2

(et/2)k−1

= et ·
[
et/2 + (et/2)2 + (et/2)3 + · · ·

]
= et · (et/2) ·

[
1 + (et/2)1 + (e2/2)2 + · · ·

]
= et · (et/2) · 1

1− et/2

=
e2t

2− et
.
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Now we can use this to compute the mean and variance. The only trick is to remember the
quotient rule for derivatives:

µ = E[X] =
d

dt
MX(t)

∣∣∣∣
t=0

=
d

dt

(
e2t

2− et

)∣∣∣∣
t=0

=
(2− et)(e2t)′ − (e2t)(2− et)′

(2− et)2

∣∣∣∣
t=0

=
(2− et)(2e2t)− (e2t)(−et)

(2− et)2

∣∣∣∣
t=0

=
(2− e0)(2e0)− (e0)(−e0)

(2− e0)2

=
(2− 1)(2)− (1)(−1)

(2− 1)2

= 3.

Alright, that was enough fun. My computer did the rest of the work:

E[X2] =
d2

dt2
MX(t)

∣∣∣∣
t=0

= 11,

σ2 = Var(X) = E[X2]− E[X]2 = 11− (3)2 = 2

σ =
√

2 ≈ 1.414.

Here is a picture summarizing the results of Exercise 2.3-16:

2.3-18. Let X have a geometric distribution, i.e., P (X = k) = p(1− p)k−1. Show that for
any non-negative integers j and k we have

P (X > k + j |X > k) = P (X > j).
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Proof: We recall from HW3 that for all non-negative integers ` we have

P (X > `) =
∞∑

k=`+1

p(1− p)`−1

= p(1− p)` + p(1− p)`+1 + p(1− p)`+2 + · · ·

= p(1− p)` ·
[
1 + (1− p)1 + (1− p)2 + · · ·

]
= p(1− p)` · 1

1− (1− p)
= (1− p)`.

Next we note that the event “X > k + j and X > k” is the same as “X > k + j.” Finally, we
use the definition of conditional probability:

P (X > k + j |X > k) = P (X > k + j and X > k)/P (X > k)

= P (X > k + j)/P (X > k)

= (1− p)k+j/(1− p)k

= (1− p)j

= P (X > j).

///

What does it mean? A geometric random variable means we are waiting for something to
happen. The number P (X > j) is the probability that it will take at least j units of time
for the thing to happen. Now suppose that we have been waiting for k units of time and the
thing still hasn’t happened. What is the chance that we will have to wait at least j more
units of time? Answer: P (X > j). Reason: A geometric random variable doesn’t know how
long we’ve been waiting because it has no memory. This is why we model it with a coin flip.

2.4-13. It is claimed that in a particular lottery, 1/10 of the 50 million tickets will win a
prize. What is the probability of winning at least one prize if you purchase

(a) 10 tickets? Solution: Let Xi be the event defined by

Xi =

{
1 if your ith ticket wins a prize,

0 if your ith ticket does not win a prize.

These events are not independent. (For example, if your first ticket wins a prize,
then your second ticket is slightly less likely to win a prize.) However, they are ap-
proximately independent because the number 50, 000, 000 is so big. Therefore we
will assume that P (Xi = 1) = 1/10 and P (Xi = 0) = 9/10 for all i. Under these
assumptions, the total number of prizes

X = X1 +X2 + · · ·+X10

is approximately binomial with n = 10 and p = 1/10. Therefore the probability of
winning at least one prize is

P (X ≥ 1) = 1− P (X = 0) = 1− (1− p)10 = 1− (9/10)10 ≈ 65.13%.

(b) 15 tickets? Solution: Using the same simplifying assumptions, the number of prizes
X that we win is approximately binomial with n = 15 and p = 1/10. Therefore the
probability of winning at least one prize is

P (X ≥ 1) = 1− (1− p)15 = 1− (9/10)15 ≈ 79.41%.
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2.4-14. Continuing from the previous problem, suppose that we buy n tickets. Then the
number of prizes X that we win is approximately binomial with p = 1/10. (In reality it is
hypergeometric.) Therefore the probability of winning at least one prize is approximately

P (X ≥ 1) ≈ 1− (1− p)n = 1− (9/10)n.

Here is a plot of the probability P (X ≥ 1) for values of n from 1 to 50:

It looks like the probability crosses 0.5 between n = 6 and n = 7, and the probability crosses
0.95 when n is around 30. To be precise, we have

n = 6 → P (X ≥ 1) ≈ 46.86%

n = 7 → P (X ≥ 1) ≈ 52.17%

n = 28 → P (X ≥ 1) ≈ 94.77%

n = 29 → P (X ≥ 1) ≈ 95.29%.

///

Remark: In the previous two exercises we approximated the number of prizes X by a bino-
mial distribution where n is the number of tickets we buy and p = 1/10 is the proportion
of tickets that are winners. In reality X has a hypergeometric distribution. To see this,
note that there are 5, 000, 000 winning tickets and 45, 000, 000 losing tickets in an urn. We
reach in and grab n tickets at random. The probability of getting exactly k winning tickets
is

P (X = k) =

(
5, 000, 000

k

)(
45, 000, 000

n− k

)
/

(
50, 000, 000

n

)
,

and the probability of getting at least one winning ticket is

P (X ≥ 1) = 1− P (X = 0) = 1−
(

45, 000, 000

n

)
/

(
50, 000, 000

n

)
.
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Therefore we are assuming for simplicity that(
45, 000, 000

n

)
/

(
50, 000, 000

n

)
≈ (9/10)n.

It turns out that this approximation1 is quite good for small values of n. Indeed, I ran all the
calculations again with the exact formula and I got the same answers up to several decimal
places.

4.1-3. Let X and Y be random variables with SX = {1, 2} and SY = {1, 2, 3, 4} and with
joint pmf given by the formula

fXY (x, y) =
x+ y

32
.

Solution: For (a) and (b) we draw the joint pmf as a table and then we sum the rows and
columns to get the marginal pmfs:

For (c) through (f) we add the probabilities in the relevant cells of the table:

P (X > Y ) = 3/32

P (Y = 2X) = 3/32 + 6/32 = 9/32

P (X + Y = 3) = 3/32 + 3/32 = 6/32

P (X + Y ≤ 3) = P (X ≤ 3− Y ) = 2/32 + 3/32 + 3/32 = 8/32.

(g): We note that X and Y are not independent because, for example, the joint probability
P (X = 1, Y = 1) = 2/32 is not equal to the product of the marginal probabilities P (X =
1)P (Y = 1) = (14/32)(5/32).

(h): We use tables to compute the 1st and 2nd moments of X and Y . Here is the table for X:

P (X = k) 14/32 18/32

k 1 2

k2 1 4

→ E[X] = 1(14/32) + 2(18/32) = 25/16
→ E[X2] = 1(14/32) + 4(18/32) = 43/16

1We’ll talk more about these ideas after Exam2.
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And here is the table for Y :

P (Y = `) 5
32

7
32

9
32

11
32

` 1 2 3 4

`2 1 4 9 25

→ E[Y ] = 1 5
32 + 2 7

32 + 3 9
32 + 411

32 = 45/16

→ E[Y 2] = 1 5
32 + 4 7

32 + 9 9
32 + 1611

32 = 145/16

Finally, we compute the variances:

Var(X) = E[X2]− E[X]2 = (43/16)− (25/16)2 = 63/256,

Var(Y ) = E[Y 2]− E[Y ]2 = (145/16)− (45/16)2 = 295/256.

4.1-4. Let X be a random number from the set {0, 2, 4, 6, 8} and let Z be a random number
from the set {0, 1, 2, 3, 4}. We obseve that X and Z are independent and that each possible
pair of numbers has equal probability 1/52 = 1/25.

Now let Y = X + Z. We expect that X and Y are not independent. To verify this we
will compute the joint pmf of X and Y . First note that

SY = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
We observe that each possible value of Y either has probability 0 (because it is impossible)
or 1/25 (because there is exactly one way it can happen). Thus we obtain the following table
showing the joint and marginal pmfs of X and Y (to save space we write P = 1/25):

x \ y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 P P P P P 0 0 0 0 0 0 0 0 5P
2 0 0 P P P P P 0 0 0 0 0 0 5P
4 0 0 0 0 P P P P P 0 0 0 0 5P
6 0 0 0 0 0 0 P P P P P 0 0 5P
8 0 0 0 0 0 0 0 0 P P P P P 5P

P P 2P 2P 3P 2P 3P 2P 3P 2P 2P P P

To see that X and Y are not independent, we only need to observe, for example, that the
joint probability

P (X = 2, Y = 0) = 0

is not equal to the product of the marginal probabilities:

P (X = 2)P (Y = 0) = (5/25)(1/25) 6= 0.

4.2-3(a). Roll a fair 4-sided die twice. Let X equal the outcome on the first roll and let Y
equal the sum of the two rolls.

Here is a table showing the marginal and joint pmfs of X and Y (to save space we write
P = 1/16):

x \ y 2 3 4 5 6 7 8

1 P P P P 0 0 0 4P
2 0 P P P P 0 0 4P
3 0 0 P P P P 0 4P
4 0 0 0 P P P P 4P

P 2P 3P 4P 3P 2P P

To compute µX and σ2
x we use the marginal distribution of X:

E[X] = 1(4P ) + 2(4P ) + 3(4P ) + 4(4P ) = 5/2,
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E[X2] = 12(4P ) + 22(4P ) + 32(4P ) + 42(4P ) = 15/2,

σ2
X = E[X2]− E[X]2 = (15/2)− (5/2)2 = 5/4.

To compute µY and σ2
Y we use the marginal distribution of Y :

E[Y ] = 2(P ) + 3(2P ) + 4(3P ) + 5(4P ) + 6(3P ) + 7(2P ) + 8(P ) = 5,

E[Y 2] = 22(P ) + 32(2P ) + 42(3P ) + 52(4P ) + 62(3P ) + 72(2P ) + 82(P ) = 55/2

σ2
Y = E[Y 2]− E[Y ]2 = (55/2)− (5)2 = 5/2.

To compute Cov(X,Y ) we could use the joint pmf table to find E[XY ] and then compute
Cov(X,Y ) = E[XY ]− µXµY , but there’s a better way:

We will use the fact that Y = X +Z where X is the number that shows up on the first roll
and Z is the number that shows up on the second roll. Since Z is identically distributed with
X we know that Var(Z) = Var(X) = σ2

X = 5/4, as shown above. Then we can use the fact
that X and Z are independent to compute

Var(X + Y ) = Var(X +X + Z)

= Var(2X + Z)

= Var(2X) + Var(Z)

= 22Var(X) + Var(Z)

= 4(5/4) + (5/4)

= 25/4.

It follows that

Var(X + Y ) = Var(X) + Var(Y ) + 2 · Cov(X,Y )

25/4 = 5/4 + 5/2 + 2 · Cov(X,Y )

10/4 = 2 · Cov(X,Y )

5/4 = Cov(X,Y ),

and hence

ρXY =
Cov(X,Y )

σXσY
=

5/4√
5/4 ·

√
5/2

=

√
2

2
≈ 0.707.

///

What does it mean? If you flip the pmf table upside-down (so it looks like a typical x, y-
plane) then the diagonal cluster of P ’s is reasonably close to a straight line with positive slope.
That’s why the correlation ρXY ≈ 0.707 is reasonably close to +1.

5.3-2. Let X1 and X2 be independent random variables with binomial distributions
b(3, 1/2) and b(5, 1/2), respectively. Determine

(a) P (X1 = 2, X2 = 4). Answer: Since X1 and X2 are independent we have

P (X1 = 2, X2 = 4) = P (X1 = 2)P (X2 = 4)

=

(
3

2

)
(1/2)2(1/2)1

(
5

4

)
(1/2)4(1/2)1

= (3/23)(5/23)

= 15/26 ≈ 5.86%.
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(b) P (X1 +X2 = 7). Answer: For this one it’s helpful to draw the full pmf table. Since X1

and X2 are independent we compute their marginal distributions and then multiply
them as follows:

The event “X1 +X2 = 7” corresponds to the two circled entries, so that

P (X1 +X2 = 7) =
3

256
+

5

256
=

8

256
=

1

32
.

2.3-5. Let X1 and X2 be observations of a random sample of size n = 2 from a distribution
with pmf f(x) = x/6 and support x = 1, 2, 3. Find the pmf of Y = X1 +X2. Determine the
mean and variance of Y in two different ways.

Solution: We assume that X1 and X2 are independent and that each has the marginal
distribution

x 1 2 3

P (Xi = x) 1/6 2/6 3/6

Thus their joint pmf is given by the following table:
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To compute the pmf of Y = X1 +X2 we circle the event “Y = y” for each possible value of y:

And them we add up the probabilities in each blob to obtain:

P (Y = y) 1/36 4/36 10/36 12/36 9/36

y 2 3 4 5 6

y2 4 9 16 25 36

Thus we have

E[Y ] = 2
1

36
+ 3

4

36
+ 4

10

36
+ 5

12

36
+ 6

9

36
=

14

3

E[Y 2] = 22 1

36
+ 32 4

36
+ 42 10

36
+ 52 12

36
+ 62 9

36
=

206

9

Var(Y ) = E[Y 2]− E[Y ]2 = (206/9)− (14/3)2 =
10

9
.

Alternatively, we can first compute the mean and variance of X1 and X2:

E[Xi] = 1
1

6
+ 2

2

6
+ 3

3

6
=

7

3
,

E[X2
i ] = 12 1

6
+ 22 2

6
+ 32 3

6
= 6,

Var(Xi) = E[X2
i ]− E[Xi]

2 = 6− (7/3)2 =
5

9
.

And then we can use the algebraic properties of mean and variance to obtain

E[Y ] = E[X1 +X2] = E[X1] + E[X2] =
7

3
+

7

3
=

14

3
,

Var(Y ) = Var(X1 +X2) = Var(X1) + Var(X2) =
5

9
+

5

9
=

10

9
.
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In the second equation we used the fact that X1, X2 are independent, which implies that
Cov(X1, X2) = 0. The fact that we got the same answer both times means that our answer is
correct. Also, it agrees with the answer in the back of the book.

Additional Problems.

1. “Collecting Coupons.” Each box of a certain brand of cereal comes with a toy. If
there are n possible toys and if they are distributed randomly, how many boxes of cereal do
you expect to buy before you get them all?

(a) Let X be a geometric random variable with pmf P (X = k) = p(1 − p)k−1. Use a
geometric series to compute the moment generating function:

M(t) = E[etX ] =
∞∑
k=1

etkp(1− p)k−1 = etp ·
∞∑
k=1

[
et(1− p)

]k−1
= ?

(b) Compute the derivative of M(t) to find the expected value of X:

E[X] = M ′(0) = ?

(b) Assuming that you already have ` of the toys, let X` be the number of boxes of cereal
that you buy until you get a new toy. Observe that X` is geometric and use this fact
to compute E[X`].

(d) Let X be the number of boxes that you buy until you see all n toys. Then we have

X = X0 +X1 + · · ·+Xn−1.

Use this to compute the expected value E[X]. [Hint: See Example 2.5-5 in the textbook
for the case n = 6.]

Solution: Suppose X has pmf P (X = k) = p(1− p)k−1 for k ≥ 1. Then the mgf is

MX(t) = E[etX ] =
∑
k≥1

kP (X = k)

=

∞∑
k=1

etkp(1− p)k−1

= etp ·
∞∑
k=1

[
et(1− p)

]k−1

= etp ·
[
1 + et(1− p) + (et(1− p))2 + · · ·

]
= etp ·

[
1

1− et(1− p)

]
=

etp

1− et(1− p)
.

To compute the expected value, we use the quotient rule to differentiate the mgf and then we
substitute t = 0:

E[X] =
d

dt
MX(t)

∣∣∣∣
t=0

=
d

dt

(
etp

1− et(1− p)

)∣∣∣∣
t=0

=
(1− et(1− p))(etp)′ − (etp)(1− et(1− p))′

(1− et(1− p))2

∣∣∣∣
t=0
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=
(1− et(1− p))(etp)− (etp)(−et(1− p))

(1− et(1− p))2

∣∣∣∣
t=0

=
(1− e0(1− p))(e0p)− (e0p)(−e0(1− p))

(1− e0(1− p))2

=
(1− 1(1− p))(1p)− (1p)(−1(1− p))

(1− 1(1− p))2

=
(p)(p)− p(p− 1)

(p)2

=
p(p− (p− 1))

p2

= p/p2

= 1/p.

What does it mean? Suppose you have a coin with P (H) = p. If you continue to flip the coin
then you are most likely to see the first head on the (1/p)-th flip.

Now suppose you are collecting n random toys from cereal boxes and you already have ` of
the toys. Let X` be the number of boxes you buy before you see a new toy. In this situation
we can think of each cereal box as a “coin flip” with H=“new toy” and T=“old toy.” Since
the toys are randomly distributed this means that P (H) = (n− `)/n and P (T ) = `/n. Thus
X` is a geometric random variable with p = (n− `)/n and we conclude that

E[X`] =
1

p
=

n

n− `
.

Finally, let X be the number of cereal boxes we buy before we see all n toys. This random
variable is not geometric, but it is a sum of geometric random variables. Since X is the total
number of boxes and since X` is the number of boxes from the `-th toy to the (` + 1)-st toy
we conclude that

X = X0 +X1 +X2 + · · ·+Xn−1

E[X] = E[X0] + E[X1] + E[X2] + · · ·+ E[Xn−1]

=
n

n− 0
+

n

n− 1
+

n

n− 2
+ · · ·+ n

n− (n− 1)

=
n

n
+

n

n− 1
+

n

n− 2
+ · · ·+ n

1
.

For example, suppose we continue to roll a fair n = 6 sided die and let X be the number of
rolls until we see all six faces. Then on average we will perform

E[X] =
6

6
+

6

5
+

6

4
+

6

3
+

6

2
+

6

1
= 14.7 rolls.

That was a fun problem.


