Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

- Section 2.1, Exercises 6, 7, 8, 12.
- Section 2.3, Exercises 1, 3, 4, 12, 13, 14.
- Section 2.4, Exercises 12.

Additional Problems.

1. Two Formulas for Expectation. Let S be the sample space of an experiment (assume that S is finite) and let $X: S \rightarrow \mathbf{R}$ be any random variable. Let $S_{X} \subseteq \mathbb{R}$ be the "support" of X, i.e., the set of possible values that X can take. Explain why the following formula is true:

$$
\sum_{s \in S} X(s) \cdot P(s)=\sum_{k \in S_{X}} k \cdot P(X=k) .
$$

2. Expected Value of a Binomial Random Variable.

(a) Use the explicit formula for binomial coefficients to prove that

$$
k\binom{n}{k}=n\binom{n-1}{k-1} .
$$

(b) Use part (a) to compute the expected value of a binomial random variable:

$$
\begin{aligned}
E[X] & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \\
& =\cdots
\end{aligned}
$$

