
Math 224 Fall 2017
Homework 2 Drew Armstrong

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zim-
merman:

• Section 1.2, Exercises 5, 7, 13, 16.
• Section 1.3, Exercises 4, 6, 7, 11.
• Section 1.5, Exercises 2, 4.

Solutions to Book Problems.

1.2-5. How many four-letter code words are possible using the letters IOWA if

(a) The letters may not be repeated? Answer:

4︸︷︷︸
1st letter

× 3︸︷︷︸
2nd letter

× 2︸︷︷︸
3rd letter

× 1︸︷︷︸
4th letter

= 4! = 24.

(b) The letters may be repeated? Answer:

4︸︷︷︸
1st letter

× 4︸︷︷︸
2nd letter

× 4︸︷︷︸
3rd letter

× 4︸︷︷︸
4th letter

= 44 = 256.

1.2-7. In a state lottery, four digits are drawn (one at a time and with replacement) from
the possibilities 0, 1, 2, . . . , 9. Let S be the sample space of all possible outcomes, so that

#S = 10︸︷︷︸
1st digit

× 10︸︷︷︸
2nd digit

× 10︸︷︷︸
3rd digit

× 10︸︷︷︸
4th digit

= 104 = 10, 000.

Suppose that you win if any permutation of your selected integers is drawn. What is the
probability of winning if you select

(a) 6, 7, 8, 9. Answer: The number of permutations of 6, 7, 8, 9 is(
4

1, 1, 1, 1

)
=

4!

1!1!1!1!
= 24,

so the probability of winning is

P (winning) =
24

10, 000
= 0.24%.

(b) 6, 7, 8, 8. Answer: The number of permutations of 6, 7, 8, 8 is(
4

1, 1, 2

)
=

4!

1!1!2!
= 12,

so the probability of winning is

P (winning) =
12

10, 000
= 0.12%.

(c) 7, 7, 8, 8. Answer: The number of permutations of 7, 7, 8, 8 is(
4

2, 2

)
=

4!

2!2!
= 6,

so the probability of winning is

P (winning) =
6

10, 000
= 0.06%.



(d) 7, 8, 8, 8. Answer: The number of permutations of 7, 8, 8, 8 is(
4

1, 3

)
=

4!

1!3!
= 4,

so the probability of winning is

P (winning) =
4

10, 000
= 0.04%.

1.2-13. A bridge hand consists of 13 (unordered) cards taken (at random and without
replacement) from a standard deck of 52 cards. Let S be the sample space of all possible
bridge hands, so that

#S =

(
52

13

)
=

52!

13!39!
= 635, 013, 559, 600.

Find the probability of each of the following hands.

(a) 5 spades, 4 hearts, 3 diamonds, 1 club. Answer: The number of such hands is(
13

5

)
︸ ︷︷ ︸
choose
spades

×
(

13

4

)
︸ ︷︷ ︸
choose
hearts

×
(

13

3

)
︸ ︷︷ ︸
choose

diamonds

×
(

13

1

)
︸ ︷︷ ︸
choose
clubs

= 3, 421, 322, 190

so the probability of this hand is

3, 421, 322, 190

635, 013, 559, 600
≈ 0.54%.

(b) 5 spades, 4 hearts, 2 diamonds, 2 clubs. Answer: The number of such hands is(
13

5

)
︸ ︷︷ ︸
choose
spades

×
(

13

4

)
︸ ︷︷ ︸
choose
hearts

×
(

13

2

)
︸ ︷︷ ︸
choose

diamonds

×
(

13

2

)
︸ ︷︷ ︸
choose
clubs

= 5, 598, 527, 220

so the probability of this hand is

5, 598, 527, 220

635, 013, 559, 600
≈ 0.88%.

(c) 5 spades, 4 hearts, 1 diamond, 3 clubs. Answer: The number of such hands is(
13

5

)
︸ ︷︷ ︸
choose
spades

×
(

13

4

)
︸ ︷︷ ︸
choose
hearts

×
(

13

1

)
︸ ︷︷ ︸
choose

diamonds

×
(

13

3

)
︸ ︷︷ ︸
choose
clubs

= 3, 421, 322, 190

so the probability of this hand is

3, 421, 322, 190

635, 013, 559, 600
≈ 0.54%.

(d) Suppose you are dealt 5 cards of one suit (say spades) and 4 cards of another suit (say
hearts). Is it more likely that the other suits split 2, 2 or split 1, 3? Answer: There are
4 cards remaining to be dealt from the two remaining suits (in this example, diamonds



and clubs). If the cards split 2, 2 then we must have 2 diamonds and 2 clubs. The
number of ways to do this is(

13

2

)
︸ ︷︷ ︸
choose

diamonds

×
(

13

2

)
︸ ︷︷ ︸
choose
clubs

= 6, 084.

If the cards split 1, 3 then we might have 1 diamond and 3 clubs or we might have 3
diamonds and 1 club. Thus the total number of possibilities is(

13

1

)
︸ ︷︷ ︸
choose

diamonds

×
(

13

3

)
︸ ︷︷ ︸
choose
clubs

+

(
13

3

)
︸ ︷︷ ︸
choose

diamonds

×
(

13

1

)
︸ ︷︷ ︸
choose
clubs

= 7, 436.

We conclude that splitting 1, 3 is more likely than splitting 2, 2.

1.2-16. A box of candy hearts contains 52 hearts, of which 19 are white, 10 are tan, 7
are pink, 3 are purple, 5 are yellow, 2 are orange, and 6 are green. Suppose you select 9
(unordered) pieces of candy (randomly and without replacement) from the box. Let S be the
sample space so that

#S =

(
52

9

)
= 3, 679, 075, 400.

Give the probability that

(a) Three of the hearts are white. Answer: The number of choices is(
19

3

)
︸ ︷︷ ︸

choose white
hearts

×
(

33

6

)
︸ ︷︷ ︸

choose non-white
hearts

= 1, 073, 233, 392

so the probability is
1, 073, 233, 392

3, 679, 075, 400
≈ 29.17%.

(b) 3 white, 2 tan, 1 pink, 1 yellow, 2 green. Answer: The number of choices is(
19

3

)
︸ ︷︷ ︸
white

×
(

10

2

)
︸ ︷︷ ︸
tan

×
(

7

1

)
︸︷︷︸
pink

×
(

5

1

)
︸︷︷︸
yellow

×
(

6

2

)
︸︷︷︸
green

= 22, 892, 625

so the probability is
22, 892, 625

3, 679, 075, 400
≈ 0.622%.

1.3-4. Two cards are drawn (successively and without replacement) from a standard deck of
52 cards. If S is the sample space then we have

#S = 52︸︷︷︸
1st card

× 51︸︷︷︸
2nd card

= 2, 652.

Compute the probability of drawing



(a) Two hearts. Answer: The number of choices is

13︸︷︷︸
heart

× 12︸︷︷︸
heart

= 156

so the probability is

P (two hearts) =
13× 12

52× 51
≈ 5.88%.

(b) 1st draw heart, 2nd draw club. Answer: The number of choices is

13︸︷︷︸
heart

× 13︸︷︷︸
club

= 169

so the probability is

P (1st heart, 2nd club) =
13× 13

52× 51
≈ 6.37%.

(c) 1st draw heart, 2nd draw ace. Answer: To count these we need to isolate the ace of
hearts. The number of choices is

12︸︷︷︸
heart

× 1︸︷︷︸
ace of
hearts

+ 13︸︷︷︸
heart

× 3︸︷︷︸
ace of

non-hearts

= 51

so the probability is

P (1st heart, 2nd ace) =
12× 1 + 13× 3

52× 51
≈ 1.92%.

1.3-6. A man is selected at random from a group of 982 men who died in 2002. Consider
the events

A = “the man died from heart disease,”

B = “the man had at least one parent who had some heart disease.”

We are told that

P (A) =
221

982
, P (B) =

334

982
and P (A ∩B) =

111

982
.

Given that neither of his parents had heart disease, find the conditional probability that this
man died from heart disease.

Solution: We are looking for the probability P (A|B′), which by definition is

P (A|B′) =
P (A ∩B′)

P (B′)
.

We know that P (B′) = 1−P (B) so it remains only to compute P (A∩B′). To do this we can
use B to divide A into two disjoint pieces:

A = (A ∩B) t (A ∩B′)

P (A) = P (A ∩B) + P (A ∩B′)

P (A)− P (A ∩B) = P (A ∩B′).

Finally, we conclude that

P (A|B′) =
P (A ∩B′)

P (B′)
=

P (A)− P (A ∩B)

1− P (B)
=

221− 111

982− 334
≈ 16.98%.



1.3-7. An urn contains 2 orange and 2 blue balls. Your friend selects 2 balls (at random
and without replacement) and tells you that at least one of them is orange. What is the
probability that the other ball is also orange?

Solution: The sample space satisfies #S =
(
4
2

)
= 6. Let X be the number of orange balls

in your friend’s selection so that

P (X = 0) =

(
2
0

)(
2
2

)(
4
2

) =
1

6
, P (X = 1) =

(
2
1

)(
2
1

)(
4
2

) =
4

6
and P (X = 2) =

(
2
2

)(
2
0

)(
4
2

) =
1

6
.

The conditional probability we are looking for is

P (X = 2 |X ≥ 1) =
P (“X = 2” ∩ “X ≥ 1”)

P (X ≥ 1)
=

P (X = 2)

1− P (X = 0)
=

1

6− 1
= 20%.

Observe that this is slightly higher than the unconditional probability P (X = 2) ≈ 16.67%.
That is, by knowing that there is “at least one orange ball,” your estimation of the probability
of “two orange balls” should go up from 16.67% to 20%.

1.3-11. The Birthday Problem. Consider a classroom containing r students. As-
sume that each student has a birthday which we can encode as a number from the set
{1, 2, 3, . . . , 365} (we ignore leap years), and suppose furthermore that each of these birth-
days is equally likely.

(a) Suppose that the r students are ordered (for example, in alphabetical order by last
name). If we ask each student for their birthday, what is the size of the sample space?
Answer:

#S = 365︸︷︷︸
1st student’s
birthday

× 365︸︷︷︸
2nd student’s

birthday

× · · · × 365︸︷︷︸
rth student’s

birthday

= 365r.

(b) Now consider the event E =“no two students have the same birthday.” If r > 365 then
we are guaranteed that there must be two students with the same birthday, so that
#E = 0. Otherwise, if r ≤ 365 then we have

#E = 365︸︷︷︸
1st student’s
birthday

× 364︸︷︷︸
2nd student’s

birthday

× · · · × (365− r + 1)︸ ︷︷ ︸
rth student’s

birthday

= 365!/(365− r)!.

(c) Assuming that all outcomes are equally likely, what is the probability that in a class
of r students at least two will have the same birthday? Answer: If r ≤ 365 then

P (at least two share a birthday) = 1− P (no two share a birthday)

= 1− P (E)

= 1− #E

#S

= 1− 365!/(365− r)!

365r
.

If r > 365 then P (at least two share a birthday) = 1− P (E) = 1− 0 = 1.
(d) Here is a plot of the probabilites 1−P (E) for values of r from 1 to 365. Note that the

probability rises from 0% when r = 1 to 100% when r = 366.



At some point the probability must cross 50% and it seems from the diagram that this
happens around r = 25. To be precise, I used my computer to find the following:
• For r = 22 students, the probability that at least two share a birthday is

1− P (E) = 1− 365!/(365− 22)!

36522
≈ 47.57%.

• For r = 23 students, the probability that at least two share a birthday is

1− P (E) = 1− 365!/(365− 23)!

36523
≈ 50.73%.

Do you find the number 23 surprisingly small? That’s why this problem is sometimes
also called the birthday paradox.

1.5-2. Bean seeds come from two suppliers, called A and B. Seeds from supplier A have an
85% germination rate and seeds from supplier B have a 75% germination rate. A seed-packing
company purchases 40% of its seeds from supplier A and 60% of its seeds from supplier B and
mixes them together (uniformly).

(a) You buy a seed from this seed-packing company and plant it. Let G be the event that
the seed germinates. Compute P (G). Answer: We are given the probabilities

P (G|A) = 0.85,

P (G|B) = 0.75,

P (A) = 0.40,

P (B) = 0.60.

In order to compute P (G) we first divide into disjoint pieces using A and B:

G = (G ∩A) t (G ∩B)

P (G) = P (G ∩A) + P (G ∩B).



Then we use the definition of conditional probability to obtain

P (G) = P (G ∩A) + P (G ∩B)

= P (A)P (G|A) + P (B)P (G|B)

= (0.40)(0.85) + (0.60)(0.75) = 79%.

(b) Given that the seed germinates, find the probability that the seed was purchased from
supplier A. Answer: We are looking for the probability P (A|G), which we can compute
using Bayes’ Theorem. In other words, we use the definition of conditional probability
together with the result of part (a) to compute

P (A|G) =
P (A ∩G)

P (G)

=
P (A)P (G|A)

P (A)P (G|A) + P (B)P (G|B)

=
(0.40)(0.85)

(0.40)(0.85) + (0.60)(0.75)
≈ 43.04%.

1.5-4. Drivers are divided into four age ranges:

R1 = “ages 16–25,”

R2 = “ages 26–50,”

R3 = “ages 51–65,”

R4 = “ages 66–90.”

If a driver is selected at random we are given the probabilities

P (R1) = 0.10, P (R2) = 0.55, P (R3) = 0.20 and P (R4) = 0.15.

[Since these probabilities add to 1, we observe that there are no drivers of age < 15 or > 90
in this sample.] Now let A be the event that this random driver gets in an accident in a given
year. We are given the probabilities

P (A|R1) = 0.05, P (A|R2) = 0.02, P (A|R3) = 0.03 and P (A|R4) = 0.04.

Finally, we can use Bayes’ Theorem to compute the conditional probability that a driver who
has an accident comes from the R1 age group:

P (R1|A) =
P (R1)P (A|R1)

P (R1)P (A|R1) + P (R2)P (A|R2) + P (R3)P (A|R3) + P (R4)P (A|R4)

=
(0.10)(0.05)

(0.10)(0.05) + (0.55)(0.02) + (0, 20)(0.03) + (0.15)(0.04)
≈ 17.86%.

Note that this number 17.86% is higher than the proportion R1 drivers in the population (i.e.,
10%) because the R1 drivers get in more accidents.

Additional Problems.

1. Pascal’s Triangle. We showed in class that the binomial coefficient
(
n
k

)
for 0 ≤ k ≤ n

is given by the formula (
n

k

)
=

n!

k! · (n− k)!
.



When 0 < k < n, use this formula to prove that(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof: By definition, the right hand side is equal to(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)! [(n− 1)− (k − 1)]!
+

(n− 1)!

k! [(n− 1)− k]!

=
(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!
.

In order to add these fractions we need a common denominator, and the denominator we hope
to get is k!(n − k)!. So how can we turn (k − 1)!(n − k)! and k!(n − k − 1)! into k!(n − k)! ?
The trick is to notice that for all positive integers m we have

m(m− 1)! = m!

which, in the cases m = k and m = n− k gives

k(k − 1)! = k!

(n− k)(n− k − 1)! = (n− k)!.

Now we know what to do: We multiplfy the first fraction top and bottom by k and multiply
the second fraction top and bottom by (n− k) to obtain(

n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
k

k
· (n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!
· (n− k)

(n− k)

=
k(n− 1)!

k!(n− k)!
+

(n− k)(n− 1)!

k!(n− k)!

=
[�k + (n−�k)](n− 1)!

k!(n− k)!

=
n(n− 1)!

k!(n− k)!

=
n!

k!(n− k)!
,

which equals the left hand side, as desired. ///

2. Pascal’s Tetrahedron. Let k1, k2, k3 be non-negative whole numbers that add to n.
We saw in class that the trinomial coefficient

(
n

k1,k2,k3

)
is given by the formula(

n

k1, k2, k3

)
=

n!

k1! · k2! · k3!
.

In the case that k1, k2, k3 are strictly positive, use this formula to prove that(
n

k1, k2, k3

)
=

(
n− 1

k1 − 1, k2, k3

)
+

(
n− 1

k1, k2 − 1, k3

)
+

(
n− 1

k1, k2, k3 − 1

)
.



Proof: This one looks harder but I think it’s actually easier. By definition, the right hand
side is(

n− 1

k1 − 1, k2, k3

)
+

(
n− 1

k1, k2 − 1, k3

)
+

(
n− 1

k1, k2, k3 − 1

)
=

(n− 1)!

(k1 − 1)!k2!k3!
+

(n− 1)!

k1!(k2 − 1)!k3!
+

(n− 1)!

k1!k2!(k3 − 1)!

In order to get a common denominator we use the trick m(m− 1)! = m! with m = k1, m = k2
and m = k3 to get

(n− 1)!

(k1 − 1)!k2!k3!
+

(n− 1)!

k1!(k2 − 1)!k3!
+

(n− 1)!

k1!k2!(k3 − 1)!

=
k1
k1
· (n− 1)!

(k1 − 1)!k2!k3!
+

k2
k2
· (n− 1)!

k1!(k2 − 1)!k3!
+

k3
k3
· (n− 1)!

k1!k2!(k3 − 1)!

=
k1(n− 1)!

k1!k2!k3!
+

k2(n− 1)!

k1!k2!k3!
+

k3(n− 1)!

k1!k2!k3!

=
[k1 + k2 + k3] (n− 1)!

k1!k2!k3!
.

Finally, we use the facts k1 + k2 + k3 = n and n(n− 1)! = n! to obtain

[k1 + k2 + k3] (n− 1)!

k1!k2!k3!
=

n(n− 1)!

k1!k2!k3!
=

n!

k1!k2!k3!
,

which equals the left hand side, as desired. ///

[Remark: When a trinomial power such as (a + b + c)n is expanded, one can arrange the terms in
the shape of a triangle. For example:

(a + b + c)3 =

a3

+3a2b +3a2c
+3ab2 +6abc +3ac2

+b3 +3b2c +3bc2 +c3

Thus the trinomial coefficients form a triangle of numbers:(
3

3,0,0

)(
3

2,1,0

) (
3

2,0,1

)(
3

1,2,0

) (
3

1,1,1

) (
3

1,0,2

)(
3

0,3,0

) (
3

0,2,1

) (
3

0,1,2

) (
3

0,0,3

) =

1
3 3

3 6 3
1 3 3 1

One can stack these triangles into the shape of a triangular pyramid in which each number equals
the sum of the three numbers directly above. Try it!]


