Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

- Section 1.2, Exercises 5, 7, 13, 16.
- Section 1.3, Exercises 4, 6, 7, 11.
- Section 1.5, Exercises 2, 4.

Solutions to Book Problems.

1.2-5. How many four-letter code words are possible using the letters IOWA if
(a) The letters may not be repeated? Answer:

$$
\underbrace{4}_{\text {1st letter }} \times \underbrace{3}_{2 \text { nd letter }} \times \underbrace{2}_{3 \text { rd letter }} \times \underbrace{1}_{4 \text { th letter }}=4!=24 .
$$

(b) The letters may be repeated? Answer:

$$
\underbrace{4}_{\text {1st letter }} \times \underbrace{4}_{\text {2nd letter }} \times \underbrace{4}_{\text {3rd letter }} \times \underbrace{4}_{\text {4th letter }}=4^{4}=256
$$

1.2-7. In a state lottery, four digits are drawn (one at a time and with replacement) from the possibilities $0,1,2, \ldots, 9$. Let S be the sample space of all possible outcomes, so that

$$
\# S=\underbrace{10}_{\text {1st digit }} \times \underbrace{10}_{2 \text { nd digit }} \times \underbrace{10}_{3 \text { rd digit }} \times \underbrace{10}_{4 \text { th digit }}=10^{4}=10,000
$$

Suppose that you win if any permutation of your selected integers is drawn. What is the probability of winning if you select
(a) $6,7,8,9$. Answer: The number of permutations of $6,7,8,9$ is

$$
\binom{4}{1,1,1,1}=\frac{4!}{1!1!1!1!}=24
$$

so the probability of winning is

$$
P(\text { winning })=\frac{24}{10,000}=0.24 \% \text {. }
$$

(b) $6,7,8,8$. Answer: The number of permutations of $6,7,8,8$ is

$$
\binom{4}{1,1,2}=\frac{4!}{1!1!2!}=12
$$

so the probability of winning is

$$
P(\text { winning })=\frac{12}{10,000}=0.12 \% .
$$

(c) $7,7,8,8$. Answer: The number of permutations of $7,7,8,8$ is

$$
\binom{4}{2,2}=\frac{4!}{2!2!}=6,
$$

so the probability of winning is

$$
P(\text { winning })=\frac{6}{10,000}=0.06 \%
$$

(d) $7,8,8,8$. Answer: The number of permutations of $7,8,8,8$ is

$$
\binom{4}{1,3}=\frac{4!}{1!3!}=4,
$$

so the probability of winning is

$$
P(\text { winning })=\frac{4}{10,000}=0.04 \% .
$$

1.2-13. A bridge hand consists of 13 (unordered) cards taken (at random and without replacement) from a standard deck of 52 cards. Let S be the sample space of all possible bridge hands, so that

$$
\# S=\binom{52}{13}=\frac{52!}{13!39!}=635,013,559,600
$$

Find the probability of each of the following hands.
(a) 5 spades, 4 hearts, 3 diamonds, 1 club. Answer: The number of such hands is

$$
\underbrace{\binom{\text { choose }}{5}}_{\begin{array}{c}
\text { choose } \\
\text { spades }
\end{array}} \times \underbrace{\binom{13}{4}}_{\substack{\text { choosese } \\
\text { diamonds }}} \times \underbrace{\binom{13}{3}}_{\substack{\text { choose } \\
\text { clubs }}} \times\binom{ 13}{1}=3,421,322,190
$$

so the probability of this hand is

$$
\frac{3,421,322,190}{635,013,559,600} \approx 0.54 \%
$$

(b) 5 spades, 4 hearts, 2 diamonds, 2 clubs. Answer: The number of such hands is

$$
\underbrace{\binom{\text { choose }}{5}}_{\substack{\text { choose } \\ \text { spades }}} \times \underbrace{\binom{13}{4}}_{\substack{\text { choorse } \\ \text { diamonds }}} \times \underbrace{\binom{13}{2}}_{\substack{\text { choose } \\ \text { clubs }}} \times\binom{ 13}{2}=5,598,527,220
$$

so the probability of this hand is

$$
\frac{5,598,527,220}{635,013,559,600} \approx 0.88 \%
$$

(c) 5 spades, 4 hearts, 1 diamond, 3 clubs. Answer: The number of such hands is

$$
\underbrace{\binom{\text { choose }}{5}}_{\substack{\text { choose } \\ \text { spades }}} \times \underbrace{\binom{13}{4}}_{\substack{\text { choorse } \\ \text { diamonds }}} \times \underbrace{\binom{13}{1}}_{\substack{\text { choose } \\ \text { clubs }}} \times\binom{ 13}{3} ~=3,421,322,190
$$

so the probability of this hand is

$$
\frac{3,421,322,190}{635,013,559,600} \approx 0.54 \%
$$

(d) Suppose you are dealt 5 cards of one suit (say spades) and 4 cards of another suit (say hearts). Is it more likely that the other suits split 2,2 or split 1,3 ? Answer: There are 4 cards remaining to be dealt from the two remaining suits (in this example, diamonds
and clubs). If the cards split 2,2 then we must have 2 diamonds and 2 clubs. The number of ways to do this is

$$
\underbrace{\binom{13}{2}}_{\substack{\text { choose } \\ \text { diamonds }}} \times \underbrace{\binom{13}{2}}_{\substack{\text { choose } \\ \text { clubs }}}=6,084 .
$$

If the cards split 1,3 then we might have 1 diamond and 3 clubs or we might have 3 diamonds and 1 club. Thus the total number of possibilities is

$$
\underbrace{\binom{13}{1}}_{\substack{\text { choose } \\ \text { diamonds }}} \times \underbrace{\binom{13}{3}}_{\substack{\text { choose } \\ \text { clubs }}}+\underbrace{\binom{13}{3}}_{\substack{\text { choose } \\ \text { diamonds }}} \times \underbrace{\text { clubs }}_{\text {choose }} ⿺\binom{13}{1}=7,436 .
$$

We conclude that splitting 1,3 is more likely than splitting 2,2 .
1.2-16. A box of candy hearts contains 52 hearts, of which 19 are white, 10 are tan, 7 are pink, 3 are purple, 5 are yellow, 2 are orange, and 6 are green. Suppose you select 9 (unordered) pieces of candy (randomly and without replacement) from the box. Let S be the sample space so that

$$
\# S=\binom{52}{9}=3,679,075,400
$$

Give the probability that
(a) Three of the hearts are white. Answer: The number of choices is

$$
\underbrace{\binom{19}{3}}_{\begin{array}{c}
\text { choose white } \\
\text { hearts }
\end{array}} \times \underbrace{\binom{33}{6}}_{\begin{array}{c}
\text { choose non-white } \\
\text { hearts }
\end{array}}=1,073,233,392
$$

so the probability is

$$
\frac{1,073,233,392}{3,679,075,400} \approx 29.17 \%
$$

(b) 3 white, 2 tan, 1 pink, 1 yellow, 2 green. Answer: The number of choices is

$$
\underbrace{\binom{19}{3}}_{\text {white }} \times \underbrace{\binom{10}{2}}_{\text {tan }} \times \underbrace{\binom{7}{1}}_{\text {pink }} \times \underbrace{\binom{5}{1}}_{\text {yellow }} \times \underbrace{\binom{6}{2}}_{\text {green }}=22,892,625
$$

so the probability is

$$
\frac{22,892,625}{3,679,075,400} \approx 0.622 \% .
$$

1.3-4. Two cards are drawn (successively and without replacement) from a standard deck of 52 cards. If S is the sample space then we have

$$
\# S=\underbrace{52}_{1 \text { st card }} \times \underbrace{51}_{2 \text { nd card }}=2,652 .
$$

Compute the probability of drawing
(a) Two hearts. Answer: The number of choices is

$$
\underbrace{13}_{\text {heart }} \times \underbrace{12}_{\text {heart }}=156
$$

so the probability is

$$
P(\text { two hearts })=\frac{13 \times 12}{52 \times 51} \approx 5.88 \%
$$

(b) 1st draw heart, 2nd draw club. Answer: The number of choices is

$$
\underbrace{13}_{\text {heart }} \times \underbrace{13}_{\text {club }}=169
$$

so the probability is

$$
P(1 \text { st heart, } 2 \text { nd club })=\frac{13 \times 13}{52 \times 51} \approx 6.37 \%
$$

(c) 1st draw heart, 2nd draw ace. Answer: To count these we need to isolate the ace of hearts. The number of choices is

$$
\underbrace{12}_{\text {heart }} \times \underbrace{1}_{\substack{\text { ace of } \\
\text { hearts }}}+\underbrace{13}_{\text {heart }} \times \underbrace{3}_{\begin{array}{c}
\text { ace of } \\
\text { non-hearts }
\end{array}}=51
$$

so the probability is

$$
P(1 \text { st heart, } 2 \text { nd ace })=\frac{12 \times 1+13 \times 3}{52 \times 51} \approx 1.92 \% .
$$

1.3-6. A man is selected at random from a group of 982 men who died in 2002. Consider the events

$$
\begin{aligned}
& A=\text { "the man died from heart disease," } \\
& B=\text { "the man had at least one parent who had some heart disease." }
\end{aligned}
$$

We are told that

$$
P(A)=\frac{221}{982}, \quad P(B)=\frac{334}{982} \quad \text { and } \quad P(A \cap B)=\frac{111}{982} .
$$

Given that neither of his parents had heart disease, find the conditional probability that this man died from heart disease.

Solution: We are looking for the probability $P\left(A \mid B^{\prime}\right)$, which by definition is

$$
P\left(A \mid B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)} .
$$

We know that $P\left(B^{\prime}\right)=1-P(B)$ so it remains only to compute $P\left(A \cap B^{\prime}\right)$. To do this we can use B to divide A into two disjoint pieces:

$$
\begin{aligned}
A & =(A \cap B) \sqcup\left(A \cap B^{\prime}\right) \\
P(A) & =P(A \cap B)+P\left(A \cap B^{\prime}\right) \\
P(A)-P(A \cap B) & =P\left(A \cap B^{\prime}\right) .
\end{aligned}
$$

Finally, we conclude that

$$
P\left(A \mid B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{P(A)-P(A \cap B)}{1-P(B)}=\frac{221-111}{982-334} \approx 16.98 \% .
$$

1.3-7. An urn contains 2 orange and 2 blue balls. Your friend selects 2 balls (at random and without replacement) and tells you that at least one of them is orange. What is the probability that the other ball is also orange?

Solution: The sample space satisfies $\# S=\binom{4}{2}=6$. Let X be the number of orange balls in your friend's selection so that

$$
P(X=0)=\frac{\binom{2}{0}\binom{2}{2}}{\binom{4}{2}}=\frac{1}{6}, \quad P(X=1)=\frac{\binom{2}{1}\binom{2}{1}}{\binom{4}{2}}=\frac{4}{6} \quad \text { and } \quad P(X=2)=\frac{\binom{2}{2}\binom{2}{0}}{\binom{4}{2}}=\frac{1}{6} .
$$

The conditional probability we are looking for is

$$
P(X=2 \mid X \geq 1)=\frac{P(" X=2 " \cap " X \geq 1 ")}{P(X \geq 1)}=\frac{P(X=2)}{1-P(X=0)}=\frac{1}{6-1}=20 \% .
$$

Observe that this is slightly higher than the unconditional probability $P(X=2) \approx 16.67 \%$. That is, by knowing that there is "at least one orange ball," your estimation of the probability of "two orange balls" should go up from 16.67% to 20%.
1.3-11. The Birthday Problem. Consider a classroom containing r students. Assume that each student has a birthday which we can encode as a number from the set $\{1,2,3, \ldots, 365\}$ (we ignore leap years), and suppose furthermore that each of these birthdays is equally likely.
(a) Suppose that the r students are ordered (for example, in alphabetical order by last name). If we ask each student for their birthday, what is the size of the sample space? Answer:

$$
\# S=\underbrace{365}_{\begin{array}{c}
\text { st student's } \\
\text { birthday }
\end{array}} \times \underbrace{365}_{\begin{array}{c}
\text { 2nd student's } \\
\text { birthday }
\end{array}} \times \cdots \times \underbrace{365}_{\begin{array}{c}
r \text { th student's } \\
\text { birthday }
\end{array}}=365^{r} .
$$

(b) Now consider the event $E=$ "no two students have the same birthday." If $r>365$ then we are guaranteed that there must be two students with the same birthday, so that $\# E=0$. Otherwise, if $r \leq 365$ then we have

$$
\# E=\underbrace{365}_{\begin{array}{c}
\text { 1st student's } \\
\text { birthday }
\end{array}} \times \underbrace{364}_{\begin{array}{c}
\text { 2nd student's } \\
\text { birthday }
\end{array}} \times \cdots \times \underbrace{(365-r+1)}_{\begin{array}{c}
r \text { th student's } \\
\text { birthday }
\end{array}}=365!/(365-r)!.
$$

(c) Assuming that all outcomes are equally likely, what is the probability that in a class of r students at least two will have the same birthday? Answer: If $r \leq 365$ then

$$
\begin{aligned}
P(\text { at least two share a birthday }) & =1-P(\text { no two share a birthday }) \\
& =1-P(E) \\
& =1-\frac{\# E}{\# S} \\
& =1-\frac{365!/(365-r)!}{365^{r}} .
\end{aligned}
$$

If $r>365$ then $P($ at least two share a birthday $)=1-P(E)=1-0=1$.
(d) Here is a plot of the probabilites $1-P(E)$ for values of r from 1 to 365 . Note that the probability rises from 0% when $r=1$ to 100% when $r=366$.

At some point the probability must cross 50% and it seems from the diagram that this happens around $r=25$. To be precise, I used my computer to find the following:

- For $r=22$ students, the probability that at least two share a birthday is

$$
1-P(E)=1-\frac{365!/(365-22)!}{365^{22}} \approx 47.57 \%
$$

- For $r=23$ students, the probability that at least two share a birthday is

$$
1-P(E)=1-\frac{365!/(365-23)!}{365^{23}} \approx 50.73 \% .
$$

Do you find the number 23 surprisingly small? That's why this problem is sometimes also called the birthday paradox.
1.5-2. Bean seeds come from two suppliers, called A and B. Seeds from supplier A have an 85% germination rate and seeds from supplier B have a 75% germination rate. A seed-packing company purchases 40% of its seeds from supplier A and 60% of its seeds from supplier B and mixes them together (uniformly).
(a) You buy a seed from this seed-packing company and plant it. Let G be the event that the seed germinates. Compute $P(G)$. Answer: We are given the probabilities

$$
\begin{aligned}
P(G \mid A) & =0.85, \\
P(G \mid B) & =0.75, \\
P(A) & =0.40, \\
P(B) & =0.60 .
\end{aligned}
$$

In order to compute $P(G)$ we first divide into disjoint pieces using A and B :

$$
\begin{aligned}
G & =(G \cap A) \sqcup(G \cap B) \\
P(G) & =P(G \cap A)+P(G \cap B) .
\end{aligned}
$$

Then we use the definition of conditional probability to obtain

$$
\begin{aligned}
P(G) & =P(G \cap A)+P(G \cap B) \\
& =P(A) P(G \mid A)+P(B) P(G \mid B) \\
& =(0.40)(0.85)+(0.60)(0.75)=79 \%
\end{aligned}
$$

(b) Given that the seed germinates, find the probability that the seed was purchased from supplier A. Answer: We are looking for the probability $P(A \mid G)$, which we can compute using Bayes' Theorem. In other words, we use the definition of conditional probability together with the result of part (a) to compute

$$
\begin{aligned}
P(A \mid G) & =\frac{P(A \cap G)}{P(G)} \\
& =\frac{P(A) P(G \mid A)}{P(A) P(G \mid A)+P(B) P(G \mid B)} \\
& =\frac{(0.40)(0.85)}{(0.40)(0.85)+(0.60)(0.75)} \approx 43.04 \% .
\end{aligned}
$$

1.5-4. Drivers are divided into four age ranges:

$$
\begin{aligned}
& R_{1}=\text { "ages } 16-25, " \\
& R_{2}=\text { "ages } 26-50, " \\
& R_{3}=\text { "ages } 51-65, " \\
& R_{4}=\text { "ages } 66-90 . "
\end{aligned}
$$

If a driver is selected at random we are given the probabilities

$$
P\left(R_{1}\right)=0.10, \quad P\left(R_{2}\right)=0.55, \quad P\left(R_{3}\right)=0.20 \quad \text { and } \quad P\left(R_{4}\right)=0.15
$$

[Since these probabilities add to 1 , we observe that there are no drivers of age <15 or >90 in this sample.] Now let A be the event that this random driver gets in an accident in a given year. We are given the probabilities

$$
P\left(A \mid R_{1}\right)=0.05, \quad P\left(A \mid R_{2}\right)=0.02, \quad P\left(A \mid R_{3}\right)=0.03 \quad \text { and } \quad P\left(A \mid R_{4}\right)=0.04 .
$$

Finally, we can use Bayes' Theorem to compute the conditional probability that a driver who has an accident comes from the R_{1} age group:

$$
\begin{aligned}
P\left(R_{1} \mid A\right) & =\frac{P\left(R_{1}\right) P\left(A \mid R_{1}\right)}{P\left(R_{1}\right) P\left(A \mid R_{1}\right)+P\left(R_{2}\right) P\left(A \mid R_{2}\right)+P\left(R_{3}\right) P\left(A \mid R_{3}\right)+P\left(R_{4}\right) P\left(A \mid R_{4}\right)} \\
& =\frac{(0.10)(0.05)}{(0.10)(0.05)+(0.55)(0.02)+(0,20)(0.03)+(0.15)(0.04)} \approx 17.86 \%
\end{aligned}
$$

Note that this number 17.86% is higher than the proportion R_{1} drivers in the population (i.e., 10%) because the R_{1} drivers get in more accidents.

Additional Problems.

1. Pascal's Triangle. We showed in class that the binomial coefficient $\binom{n}{k}$ for $0 \leq k \leq n$ is given by the formula

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!} .
$$

When $0<k<n$, use this formula to prove that

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Proof: By definition, the right hand side is equal to

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!}+\frac{(n-1)!}{k![(n-1)-k]!} \\
& =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!}
\end{aligned}
$$

In order to add these fractions we need a common denominator, and the denominator we hope to get is $k!(n-k)$!. So how can we turn $(k-1)!(n-k)$! and $k!(n-k-1)$! into $k!(n-k)$!? The trick is to notice that for all positive integers m we have

$$
m(m-1)!=m!
$$

which, in the cases $m=k$ and $m=n-k$ gives

$$
\begin{aligned}
k(k-1)! & =k! \\
(n-k)(n-k-1)! & =(n-k)!
\end{aligned}
$$

Now we know what to do: We multiplfy the first fraction top and bottom by k and multiply the second fraction top and bottom by $(n-k)$ to obtain

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!} \\
& =\frac{k}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!} \cdot \frac{(n-k)}{(n-k)} \\
& =\frac{k(n-1)!}{k!(n-k)!}+\frac{(n-k)(n-1)!}{k!(n-k)!} \\
& =\frac{[k+(n-k)](n-1)!}{k!(n-k)!} \\
& =\frac{n(n-1)!}{k!(n-k)!} \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

which equals the left hand side, as desired.
2. Pascal's Tetrahedron. Let k_{1}, k_{2}, k_{3} be non-negative whole numbers that add to n. We saw in class that the trinomial coefficient $\binom{n}{k_{1}, k_{2}, k_{3}}$ is given by the formula

$$
\binom{n}{k_{1}, k_{2}, k_{3}}=\frac{n!}{k_{1}!\cdot k_{2}!\cdot k_{3}!} .
$$

In the case that k_{1}, k_{2}, k_{3} are strictly positive, use this formula to prove that

$$
\binom{n}{k_{1}, k_{2}, k_{3}}=\binom{n-1}{k_{1}-1, k_{2}, k_{3}}+\binom{n-1}{k_{1}, k_{2}-1, k_{3}}+\binom{n-1}{k_{1}, k_{2}, k_{3}-1} .
$$

Proof: This one looks harder but I think it's actually easier. By definition, the right hand side is

$$
\begin{aligned}
\binom{n-1}{k_{1}-1, k_{2}, k_{3}}+\binom{n-1}{k_{1}, k_{2}-1, k_{3}} & +\binom{n-1}{k_{1}, k_{2}, k_{3}-1} \\
& =\frac{(n-1)!}{\left(k_{1}-1\right)!k_{2}!k_{3}!}+\frac{(n-1)!}{k_{1}!\left(k_{2}-1\right)!k_{3}!}+\frac{(n-1)!}{k_{1}!k_{2}!\left(k_{3}-1\right)!}
\end{aligned}
$$

In order to get a common denominator we use the trick $m(m-1)!=m$! with $m=k_{1}, m=k_{2}$ and $m=k_{3}$ to get

$$
\begin{aligned}
& \frac{(n-1)!}{\left(k_{1}-1\right)!k_{2}!k_{3}!}+\frac{(n-1)!}{k_{1}!\left(k_{2}-1\right)!k_{3}!}+\frac{(n-1)!}{k_{1}!k_{2}!\left(k_{3}-1\right)!} \\
& =\frac{k_{1}}{k_{1}} \cdot \frac{(n-1)!}{\left(k_{1}-1\right)!k_{2}!k_{3}!}+\frac{k_{2}}{k_{2}} \cdot \frac{(n-1)!}{k_{1}!\left(k_{2}-1\right)!k_{3}!}+\frac{k_{3}}{k_{3}} \cdot \frac{(n-1)!}{k_{1}!k_{2}!\left(k_{3}-1\right)!} \\
& =\frac{k_{1}(n-1)!}{k_{1}!k_{2}!k_{3}!}+\frac{k_{2}(n-1)!}{k_{1}!k_{2}!k_{3}!}+\frac{k_{3}(n-1)!}{k_{1}!k_{2}!k_{3}!} \\
& =\frac{\left[k_{1}+k_{2}+k_{3}\right](n-1)!}{k_{1}!k_{2}!k_{3}!}
\end{aligned}
$$

Finally, we use the facts $k_{1}+k_{2}+k_{3}=n$ and $n(n-1)!=n$! to obtain

$$
\frac{\left[k_{1}+k_{2}+k_{3}\right](n-1)!}{k_{1}!k_{2}!k_{3}!}=\frac{n(n-1)!}{k_{1}!k_{2}!k_{3}!}=\frac{n!}{k_{1}!k_{2}!k_{3}!}
$$

which equals the left hand side, as desired.
[Remark: When a trinomial power such as $(a+b+c)^{n}$ is expanded, one can arrange the terms in the shape of a triangle. For example:

$$
(a+b+c)^{3}=
$$

Thus the trinomial coefficients form a triangle of numbers:

$$
\begin{aligned}
& \begin{array}{c}
\left.\begin{array}{c}
3 \\
3,0,0
\end{array}\right)
\end{array}
\end{aligned}
$$

One can stack these triangles into the shape of a triangular pyramid in which each number equals the sum of the three numbers directly above. Try it!]

