Math 224 Fall 2017
Homework 2 Drew Armstrong

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zim-
merman:

e Section 1.2, Exercises 5, 7, 13, 16.
e Section 1.3, Exercises 4, 6, 7, 11.
e Section 1.5, Exercises 2, 4.

Solutions to Book Problems.

1.2-5. How many four-letter code words are possible using the letters IOWA if
(a) The letters may not be repeated? Answer:

4 X 3 X 2 X 1 = 4! = 24.
~— ~— ~— ~—
1st letter  2nd letter  3rd letter  4th letter
(b) The letters may be repeated? Answer:
4 x 4 x 4 x 4 =4"=256.
~— ~— ~— ~—
1st letter  2nd letter  3rd letter  4th letter

1.2-7. In a state lottery, four digits are drawn (one at a time and with replacement) from
the possibilities 0,1,2,...,9. Let S be the sample space of all possible outcomes, so that
#S= 10 x 10 x 10 x _10 =10*=10,000.
~— ~— ~—~— ~—~—
1st digit 2nd digit 3rd digit 4th digit
Suppose that you win if any permutation of your selected integers is drawn. What is the
probability of winning if you select
(a) 6,7,8,9. Answer: The number of permutations of 6,7,8,9 is

4 4!
= =24,
1,1,1,1) 111!

so the probability of winning is
24
10, 000
(b) 6,7,8,8. Answer: The number of permutations of 6,7, 8, 8 is

4 41
= =12
(1,1,2) 112! ’

so the probability of winning is

= 0.24%.

P(winning) =

12
10, 000
(¢) 7,7,8,8. Answer: The number of permutations of 7,7, 8, 8 is

4 41
(2,2) = =0

so the probability of winning is

= 0.12%.

P(winning) =

P(winning) = = 0.06%.

10,000



(d) 7,8,8,8. Answer: The number of permutations of 7,8, 8, 8 is

4 41
:7:4:7
(1,3) 113!

so the probability of winning is

P(winning) = = 0.04%.

10, 000

1.2-13. A bridge hand consists of 13 (unordered) cards taken (at random and without
replacement) from a standard deck of 52 cards. Let S be the sample space of all possible
bridge hands, so that

52 52!
p— p— = ]_ .
#5 <13) 31301 = 63: 013,559,600

Find the probability of each of the following hands.

(a) 5 spades, 4 hearts, 3 diamonds, 1 club. Answer: The number of such hands is

13 13 13 13
<5>><<4>x (3) x<1>._&4m;mz1%
—— Y M =

choose choose choose choose
spades hearts diamonds clubs

so the probability of this hand is

3,421,322, 190

~ 0.54%.
635,013, 559, 600 0.54%

(b) 5 spades, 4 hearts, 2 diamonds, 2 clubs. Answer: The number of such hands is

13 13 13 13
<5>><<4>x <2> x<2>._aamgmz2m
M N N N~

choose choose choose choose
spades hearts diamonds clubs

so the probability of this hand is

5,598, 527, 220

635.013.550.600 ~ 0887

(c) 5 spades, 4 hearts, 1 diamond, 3 clubs. Answer: The number of such hands is

13 13 13 13
<5>><<4>x <1> x<3>._&4m;nz1%
M M N N~

choose choose choose choose
spades hearts diamonds clubs

so the probability of this hand is

3,421,322, 190

~ 0.54%.
635,013, 559, 600 0.54%

(d) Suppose you are dealt 5 cards of one suit (say spades) and 4 cards of another suit (say
hearts). Is it more likely that the other suits split 2,2 or split 1,37 Answer: There are
4 cards remaining to be dealt from the two remaining suits (in this example, diamonds



and clubs). If the cards split 2,2 then we must have 2 diamonds and 2 clubs. The
number of ways to do this is

13 13
= 6,084.
—— ———
choose choose

diamonds clubs

If the cards split 1,3 then we might have 1 diamond and 3 clubs or we might have 3
diamonds and 1 club. Thus the total number of possibilities is

13 13 13 13
= 7,436.
M~ = S~ =
choose choose choose choose

diamonds clubs diamonds clubs

We conclude that splitting 1, 3 is more likely than splitting 2, 2.

1.2-16. A box of candy hearts contains 52 hearts, of which 19 are white, 10 are tan, 7
are pink, 3 are purple, 5 are yellow, 2 are orange, and 6 are green. Suppose you select 9
(unordered) pieces of candy (randomly and without replacement) from the box. Let S be the
sample space so that

52
#S = (9) = 3,679,075, 400.

Give the probability that

(a) Three of the hearts are white. Answer: The number of choices is

1
( 39> (33) = 1,073,233, 392
——

choose white  choose non-white
earts earts

so the probability is
1,073,233, 392
3,679,075, 400

(b) 3 white, 2 tan, 1 pink, 1 yellow, 2 green. Answer: The number of choices is

19 10 7 5 6
(3> X (2) X (1> X <1) X <2> = 22,892,625
[ I A T P

white tan pink yellow  green

~ 29.17%.

so the probability is
22,892,625
— " T ~0.622%.
3,679,075,400 0.622%

1.3-4. Two cards are drawn (successively and without replacement) from a standard deck of
52 cards. If S is the sample space then we have

#S= 52 x 51 =2,652.
—~— —~—
1st card  2nd card

Compute the probability of drawing



(a) Two hearts. Answer: The number of choices is
13 x 12 =156
"~
heart  heart
so the probability is
13 x 12
52 x 51

(b) 1st draw heart, 2nd draw club. Answer: The number of choices is

P(two hearts) = ~ 5.88%.

13 x 13 =169
~— =
heart club
so the probability is
13 x 13
52 x 51

(c) 1st draw heart, 2nd draw ace. Answer: To count these we need to isolate the ace of
hearts. The number of choices is

P(1st heart, 2nd club) = ~ 6.37%.

12 x 1 + 13 x 3 =51
~— =~ ~— ~—~—
heart  ace of heart ace of
hearts non-hearts

so the probability is

12x1+13x3
P(1st heart, 2nd ace) = X52 1_ 0 "2 1.92%.

1.3-6. A man is selected at random from a group of 982 men who died in 2002. Consider
the events

A = “the man died from heart disease,”

B = “the man had at least one parent who had some heart disease.”

We are told that
221 334 111
ogar TB)=ggp and PANB) =0

Given that neither of his parents had heart disease, find the conditional probability that this
man died from heart disease.

P(4) =

Solution: We are looking for the probability P(A|B’), which by definition is
P(ANnB)
P(B')
We know that P(B’) =1 — P(B) so it remains only to compute P(AN B’). To do this we can
use B to divide A into two disjoint pieces:
A=(ANB)U(ANB)
P(A)=P(ANB)+ P(ANB')

P(A)— P(ANB)=P(ANB).

Finally, we conclude that

. _P(ANB) P(A)-P(ANB) 221-111 _
P(A|B') = PBEY - 1 P(B)  —os 331" 16.98%.

P(A|B') =




1.3-7. An urn contains 2 orange and 2 blue balls. Your friend selects 2 balls (at random
and without replacement) and tells you that at least one of them is orange. What is the
probability that the other ball is also orange?

Solution: The sample space satisfies #5 = (;1) = 6. Let X be the number of orange balls
in your friend’s selection so that

2\ (2 2\ (2
) 6 () 6
The conditional probability we are looking for is
P(*X=2"n“X>1") PX=2) 1
P(X >1) C1-P(X=0) 6-1

P(X=2|X>1)= = 20%.

Observe that this is slightly higher than the unconditional probability P(X = 2) ~ 16.67%.
That is, by knowing that there is “at least one orange ball,” your estimation of the probability
of “two orange balls” should go up from 16.67% to 20%.

1.3-11. The Birthday Problem. Consider a classroom containing r students. As-
sume that each student has a birthday which we can encode as a number from the set
{1,2,3,...,365} (we ignore leap years), and suppose furthermore that each of these birth-
days is equally likely.

(a) Suppose that the r students are ordered (for example, in alphabetical order by last
name). If we ask each student for their birthday, what is the size of the sample space?
Answer:

#S= 365 x 365 X e X 365 = 365".
~— ~~ ~~
1st student’s  2nd student’s rth student’s
birthday birthday birthday

(b) Now consider the event E =“no two students have the same birthday.” If » > 365 then
we are guaranteed that there must be two students with the same birthday, so that
#E = 0. Otherwise, if r < 365 then we have

— — = | —r)!
#E 365 x 364  x---x (365 —r+ 1) =2365!/(365 — r)!.

1st student’s  2nd student’s ,
k . rth student’s
birthday birthday birthday

(c) Assuming that all outcomes are equally likely, what is the probability that in a class
of r students at least two will have the same birthday? Answer: If r < 365 then

P(at least two share a birthday) = 1 — P(no two share a birthday)

=1-P(E)

_,_#E

=1— 45
~365!/(365 — r)!

B 3657

If r > 365 then P(at least two share a birthday) =1— P(E)=1-0=1.
(d) Here is a plot of the probabilites 1 — P(E) for values of r from 1 to 365. Note that the
probability rises from 0% when r = 1 to 100% when r = 366.
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At some point the probability must cross 50% and it seems from the diagram that this

happens around r = 25. To be precise, I used my computer to find the following:

e For r = 22 students, the probability that at least two share a birthday is

365!/(365 — 22)!
/( ) ~ 47.57%.

1—-P(F)=1-—
(E) 36522
e For r = 23 students, the probability that at least two share a birthday is

365!/(365 — 23)!
/( ) ~ 50.73%.

1-P(E)=1-
(E) 365%3
Do you find the number 23 surprisingly small? That’s why this problem is sometimes

also called the birthday paradox.
1.5-2. Bean seeds come from two suppliers, called A and B. Seeds from supplier A have an
85% germination rate and seeds from supplier B have a 75% germination rate. A seed-packing
company purchases 40% of its seeds from supplier A and 60% of its seeds from supplier B and

mixes them together (uniformly).
(a) You buy a seed from this seed-packing company and plant it. Let G be the event that
the seed germinates. Compute P(G). Answer: We are given the probabilities

P(G|A) = 0.85,
P(G|B) = 0.75,
P(A) = 0.40,

P(B) = 0.60.
In order to compute P(G) we first divide into disjoint pieces using A and B:
G=(GNAU(GNB)
P(G)=P(GNA)+P(GnNB).



Then we use the definition of conditional probability to obtain
P(G)=P(GNA)+ P(GNB)
= P(A)P(G|A) + P(B)P(G|B)
= (0.40)(0.85) 4 (0.60)(0.75) = 79%.

(b) Given that the seed germinates, find the probability that the seed was purchased from
supplier A. Answer: We are looking for the probability P(A|G), which we can compute
using Bayes’ Theorem. In other words, we use the definition of conditional probability
together with the result of part (a) to compute

P(ANG)
P(A|G) = W
_ P(A)P(G|A)
- P(A)P(G|A) + P(B)P(G|B)
(0.40)(0.85)

= (0.40)(0.85) + (0.60)(0.75) =~ 304%.

1.5-4. Drivers are divided into four age ranges:
R; = “ages 16-25,”
Ro = “ages 26-50,”
R3 = “ages 51-65,”
Ry = “ages 66-90.”

If a driver is selected at random we are given the probabilities
P(R;) =0.10, P(R2)=0.55, P(R3)=0.20 and P(R4)=0.15.

[Since these probabilities add to 1, we observe that there are no drivers of age < 15 or > 90
in this sample.] Now let A be the event that this random driver gets in an accident in a given
year. We are given the probabilities

P(A|R;) = 0.05, P(A|Ry)=0.02, P(A|R3)=0.03 and P(A|Ry) = 0.04.

Finally, we can use Bayes’ Theorem to compute the conditional probability that a driver who
has an accident comes from the R; age group:
P(Ry)P(A|Ry)
P(R1)P(A|Ry) + P(R2)P(A|R2) + P(R3)P(A|Rs) + P(R4)P(A|Ry4)
(0.10)(0.05)

= (0.10)(0.05) + (0.55)(0.02) + (0, 20)(0.03) + (0.15)(0.04) 17.86%.

Note that this number 17.86% is higher than the proportion R; drivers in the population (i.e.,
10%) because the Ry drivers get in more accidents.

P(R1|A) =

Additional Problems.

1. Pascal’s Triangle. We showed in class that the binomial coefficient (Z) for0<k<n

is given by the formula
n\ n!
k) k'-(n—k)



When 0 < k£ < n, use this formula to prove that
n\y (n-—1 n n—1
k) \k-1 k)
Proof: By definition, the right hand side is equal to

n—1 N n—1\ (n—1)! n (n—1)!
k—1 k T k-D'n—-1)—k-D]  K'n-1)—FK]
B (n—1)! n (n—1)!
C(k=D!n—k)!  K(n—k-1)
In order to add these fractions we need a common denominator, and the denominator we hope

to get is k!(n — k)!. So how can we turn (k — 1)!(n — k)! and kl(n — k — 1)! into kl(n — k)!?
The trick is to notice that for all positive integers m we have

’m(m—l)!:m!‘

which, in the cases m = k and m = n — k gives

E(k—1)! = k!
(n—k)(n—k—-1)!=(n—k).

Now we know what to do: We multiplfy the first fraction top and bottom by k& and multiply
the second fraction top and bottom by (n — k) to obtain

(Z i} i) * (n " 1> G —(T)!_(rlb)i I l{:!(r(Ln—_klz! 0!

_ (n—1)! (mn-—1!  (n—k)
(k—Dln—k)! Kn-kE-1)! (n—k)
E(n—1)!  (n—Fk)(n—1)!
M=k K(n—h)
K+ (n—K)(n — 1)!
El(n — k)!
_ n(n—1)!
 kl(n—k)!
n!

T Kl(n-k)!’
which equals the left hand side, as desired. ///

k
k

2. Pascal’s Tetrahedron. Let ki, ko, k3 be non-negative whole numbers that add to n.

We saw in class that the trinomial coefficient (k1 ]?2 ks) is given by the formula

n B n!
ki, ko, ks)  ki!- kol - ksl

In the case that ki, ko, ks are strictly positive, use this formula to prove that

n _ n—1 n n—1 n n—1
ki, ko ks)  \ki —1,ko, ks ki,ko —1,ks3 ki, ko, ks —1)"



Proof: This one looks harder but I think it’s actually easier. By definition, the right hand
side is

n—1 n n—1 n n—1
k1 —1, ko, k3 ki, ko — 1, k3 ki,ko, k3 —1

(n—1)! n (n—1)! n (n—1)!
(k1 — Dlkalks!  Kkil(ka — D)ks!  Eqlko!(ks — 1)!
In order to get a common denominator we use the trick m(m — 1)! = m! with m = k1, m = kg
and m = k3 to get

(n—1)! (n—1)! (n—1)!
(or — Dlkalkyl | Fonl(ks — )Wyl | FeaVhol (g — 1))
ko (=1 ke (n—1)! ks (n—1)!

T ki (kp— Dlkalks! " kg kilkg — Dlks! ' ks klko!(ks — 1)!
_ ki(n —1)! N ka(n — 1)! n k3(n —1)!

kilkalks!  kilkolks! | kilkolks!
[k1 + ko + k3] (n — 1)!

k1lkalks!
Finally, we use the facts k1 + k2 + k3 = n and n(n — 1)! = n! to obtain
[k1 + ko + k3] (n—1)!  n(n—1)! n!
For ks T klkalks!  kalkolks!
which equals the left hand side, as desired. ///

[Remark: When a trinomial power such as (a + b+ ¢)" is expanded, one can arrange the terms in
the shape of a triangle. For example:

a3
3 +3a%b +3a%c
(atb+e)= +3ab? +6abe +3ac?
+b3 +3b%c +3bc? +c3
Thus the trinomial coefficients form a triangle of numbers:
. (3,3,0) . 1
5 (2,1,0) s (2,0,1) 5 _ 3 3
5 (1,2,0) , (1,1,1) 5 (1,0,2) ; . 3 5 6 5 3 )
(0,3,0) (0,2,1) (0,1,2) (0,0,3)

One can stack these triangles into the shape of a triangular pyramid in which each number equals
the sum of the three numbers directly above. Try it!]



