Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

- Section 1.2, Exercises 5, 7, 13, 16.
- Section 1.3, Exercises 4, 6, 7, 11.
- Section 1.5, Exercises 2, 4.

Additional Problems.

1. Pascal's Triangle. We showed in class that the binomial coefficient $\binom{n}{k}$ for $0 \leq k \leq n$ is given by the formula

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!} .
$$

When $0<k<n$, use this formula to prove that

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} .
$$

2. Pascal's Tetrahedron. Let k_{1}, k_{2}, k_{3} be non-negative whole numbers that add to n. We saw in class that the trinomial coefficient $\binom{n}{k_{1}, k_{2}, k_{3}}$ is given by the formula

$$
\binom{n}{k_{1}, k_{2}, k_{3}}=\frac{n!}{k_{1}!\cdot k_{2}!\cdot k_{3}!} .
$$

In the case that k_{1}, k_{2}, k_{3} are strictly positive, use this formula to prove that

$$
\binom{n}{k_{1}, k_{2}, k_{3}}=\binom{n-1}{k_{1}-1, k_{2}, k_{3}}+\binom{n-1}{k_{1}, k_{2}-1, k_{3}}+\binom{n-1}{k_{1}, k_{2}, k_{3}-1} .
$$

