
Math 224 Fall 2017
Homework 1 Drew Armstrong

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman.

• Section 1.1, Exercises 4,5,6,7,9,12.

Solutions to Book Problems.

1.1-4. A fair coin is tossed four times and the sequence of heads and tails is observed.

(a) The sample space is

S = {TTTT,HTTT, THTT, TTHT, TTTH,HHTT,HTHT,HTTH,

THHT, THTH, TTHH, THHH,HTHH,HHTH,HHHT,HHHH}

(b) Consider the following events:

A = { at least 3 heads }
= {THHH,HTHH,HHTH,HHHT,HHHH}

B = { at most 2 heads }
= {TTTT,HTTT, THTT, TTHT, TTTH,HHTT,HTHT,HTTH, THHT, THTH, TTHH}

C = { heads on the third toss }
= {TTHT,HTHT, THHT, TTHH, THHH,HTHH,HHHT,HHHH}

D = { 1 head and 3 tails }
= {HTTT, THTT, TTHT, TTTH}.

We note that #S = 16, #A = 5, #B = 11, #C = 8 and #D = 4 so that

P (A) =
5

16
, P (B) =

11

16
, P (C) =

8

16
and P (D) =

4

16
.

We are also asked to consider the following events:

A ∩B = { at least 3 heads AND at most 2 heads } = ∅
A ∩ C = { at least 3 heads AND heads on the third toss }

= {THHH,HTHH,HHHT,HHHH}
A ∪ C = { at least 3 heads OR heads on the third toss } = “never mind”

B ∩D = { at most 2 heads AND 1 head and 3 tails } = { 1 head and 3 tails } = D.

We observe that #(A ∩B) = 0, #(A ∩ C) = 4 and #(B ∩D) = #D = 4 so that

P (A ∩B) =
0

16
, P (A ∩ C) =

4

16
and P (B ∩D) =

4

16
.

I said “never mind” for the set A ∪ C because we don’t need to list all the elements.
Indeed, we already know that P (A) = 5/16, P (C) = 8/16 and P (A ∩ C) = 4/16, so
that

P (A ∪ C) = P (A) + P (C)− P (A ∩ C) =
5 + 8− 4

16
=

9

16
.



1.1-5. We roll a fair six-sided die until we see a 3. Consider the events

A = { we get a 3 on the first roll }
B = { at least two rolls are required to see a 3 }.

If the die is fair then we observe that P (A) = 1/6. We also observe that the events A and
B are complementary because they are mutually exclusive and they exhaust all the possible
outcomes. Therefore we conclude that

P (A ∪B) = 1 and P (B) = 1− P (A) = 1− 1

6
=

5

6
.

1.1-6. Consider two events A,B such that

P (A) = 0.4, P (B) = 0.5 and P (A ∩B) = 0.3.

(a) Then we have

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.4 + 0.5− 0.3 = 0.6.

(b) Note that we can decompose the event A into two disjoint pieces by looking at the
stuff that’s inside B or outside B:

A = (A ∩B) ∪ (A ∩B′).

[You should draw a Venn diagram to get a feeling for this.] Thus we have

P (A) = P (A ∩B) + P (A ∩B′)

P (A)− P (A ∩B) = P (A ∩B′)

0.4− 0.3 = P (A ∩B′)

0.1 = P (A ∩B′).

(c) De Morgan’s law says that (A ∩ B)′ = A′ ∪ B′. That is, the stuff that is not in (A
AND B) is the same as the stuff that is (not in A) OR (not in B). [You should draw
a Venn diagram to get a feeling for this.] Thus we have

P (A′ ∪B′) = 1− P (A ∩B) = 1− 0.3 = 0.7.

1.1-7. Consider two events A,B such that

P (A ∪B) = 0.76 and P (A ∪B′) = 0.87.

We want to find P (A). How can we do this? Well, we saw in the previous problem that A
can be decomposed by the stuff inside/outside of B:

A = (A ∩B) ∪ (A ∩B′).

And we can do the same trick to divide up A′ in terms of B and B′:

A′ = (A′ ∩B) ∪ (A′ ∩B′).

It follows from this that

P (A) = 1− P (A′) = 1− [P (A′ ∩B) + P (A′ ∩B′)].

So what? Well, de Morgan’s law also tells us that (A′∩B) = (A∪B′)′ and (A′∩B′) = (A∪B)′,
so that

P (A′ ∩B) = 1− P (A ∪B′),

P (A′ ∩B′) = 1− P (A ∪B).



Finally, putting everything together gives

P (A) = 1− [P (A′ ∩B) + P (A′ ∩B′)]

= 1−
[
[1− P (A ∪B′)] + [1− P (A ∪B)]

]
= P (A ∪B′) + P (A ∪B)− 1

= 0.87 + 0.76− 1

= 0.63.

1.1-9. We roll a fair six-sided die 3 times. Consider the following events:

A1 = { 1 or 2 on the first roll }
A2 = { 3 or 4 on the second roll }
A3 = { 5 or 6 on the third roll }.

Luckily we don’t have to analyze this experiment ourselves because the book just tells us that:

• P (Ai) = 1/3 for all i.
• P (Ai ∩Aj) = (1/3)2 for all i 6= j.
• P (A1 ∩A2 ∩A3) = (1/3)3.

Now we are asked to find P (A1 ∪ A2 ∪ A3). At this point you can just quote Theorem 1.1-6
from the book. However, I’ll do it myself from scratch. First we have

P (A1 ∪A2 ∪A3) = P (A1 ∪ (A2 ∪A3))

= P (A1) + P (A2 ∪A3)− P (A1 ∩ (A2 ∪A3))

and

P (A2 ∪A3) = P (A2) + P (A3)− P (A2 ∩A3).

Then by rewriting A1 ∩ (A2 ∪A3) = (A1 ∩A2) ∪ (A1 ∩A3) we have

P (A1 ∩ (A2 ∪A3)) = P ((A1 ∩A2) ∪ (A1 ∩A3))

= P (A1 ∩A2) + P (A1 ∩A3)− P ((A1 ∩A2) ∩ (A1 ∩A3))

= P (A1 ∩A2) + P (A1 ∩A3)− P (A1 ∩A2 ∩A3).

Putting everything together gives

P (A1 ∪A2 ∪A3) = P (A1) + P (A2 ∪A3)− P (A1 ∩ (A2 ∪A3))

= P (A1) + [P (A2) + P (A3)− P (A2 ∩A3)]

− [P (A1 ∩A2) + P (A1 ∩A3)− P (A1 ∩A2 ∩A3)] ,

or, in other words, P (A1 ∪A2 ∪A3) equals

P (A1) + P (A2) + P (A3)− P (A1 ∩A2)− P (A1 ∩A3)− P (A2 ∩A3) + P (A1 ∩A2 ∩A3).

Finally, since we know value of each term in this sum, we get

P (A1 ∪A2 ∪A3) = 3 ·
(

1

3

)
− 3 ·

(
1

3

)2

+ 1 ·
(

1

3

)3

.



Wow, that really reminds me of the third row of Pascal’s triangle. Indeed, note that(
1− 1

3

)3

= 1 + 3 ·
(
−1

3

)
+ 3 ·

(
−1

3

)2

+ 1 ·
(
−1

3

)3

= 1− 3 ·
(

1

3

)
+ 3 ·

(
1

3

)2

− 1 ·
(

1

3

)3

and hence we have

P (A1 ∪A2 ∪A3) = 1−
(

1− 1

3

)3

= 1−
(

2

3

)3

= 1− 8

27
=

19

27
.

[Remark: Maybe there’s a shorter way to do this, but it was good practice to do it the long way.]

1.1-12. This one is just a “thinking problem,” since we aren’t told precisely what “selected
randomly” means in this case. Just use your intuition.

Suppose a real number x is “selected randomly” from the closed interval [0, 1]. We are
supposed to assume that all possible choices are “equally likely,” whatever that means. Since
there are infinitely many possible choices, this suggests that the probability of any particular
x is 1/∞, or 0. Ok, I guess.

We know that P ([0, 1]) = 1 because [0, 1] is the whole sample space. It also seems intuitively
clear that P ([0, 1/2]) = P ([1/2, 1]) = 1/2. (The number is equally likely to be in the left half
or the right half of the interval.) More generally, it seems that the probability that x lies in a
particular line segment is just the length of the line segment (whether or not the endpoints
of the line segment are included).

So here are my answers:

(a) P ({x : 0 ≤ x ≤ 1/3}) = 1/3,

(b) P ({x : 1/3 ≤ x ≤ 1}) = 2/3 ,

(c) P ({x : x = 1/3}) = 0,

(d) P ({x : 1/2 < x < 5}) = P ({x : 1/2 < x ≤ 1}) + P ({x : 1 ≤ 5}) = 1/2 + 0 = 1/2.

[Remark: We will discuss “continuous probability distributions” in detail later.]

Additional Problems.

1. Consider a biased coin with P (“heads”) = p and P (“tails”) = 1− p. Suppose that you flip
the coin n times and let X be the number of heads that you get. Compute P (X ≥ 1). [Hint:
Observe that P (X ≥ 1) + P (X = 0) = 1.]

Solution: Recall from the course notes that the probability of getting exactly k heads is

P (X = k) =

(
n

k

)
pk(1− p)n−k.

Thus we are asked to compute the following sum:

P (X ≥ 1) =

n∑
k=1

(
n

k

)
pk(1− p)n−k.



That seems really hard so instead we use the formula

P (X ≥ 1) = 1− P (X = 0) = 1−
(
n

0

)
p0(1− p)n = 1− (1− p)n.

Alternatively, we can compute P (X = 0) by observing that “X = 0” corresponds to the
event {TTT · · ·T}. Since the probability of each “tail” is (1− p) and since the coin flips are
“independent” we see that

P (X = 0) = P (TTT · · ·T ) = P (T )P (T ) · · ·P (T ) = (1− p)(1− p) · · · (1− p) = (1− p)n.

///

[Remark: Compare the formula P (X = 0) = 1 − (1 − p)n to Exercise 1.1-9 above. Can you see
how to obtain the answer to 1.1-9 by plugging in p = 1/3 and n = 3? We can think of each die
roll as a fancy coin flip with P (“heads”) = 1/3. The definition of “heads” changes on each roll,
but I guess that doesn’t matter.]

2. Suppose that you roll a pair of fair six-sided dice.

(a) Write down the elements of the sample space S. What is #S? Are the outcomes
equally likely?

(b) Compute the probability of getting a “double six.” [Hint: Let E ⊆ S be the subset of
outcomes that correspond to getting a “double six.” Compute P (E) = #E/#S.]

Solution: (a) The sample space is

S ={11, 12, 13, 14, 15, 16

21, 22, 23, 24, 25, 26

31, 32, 33, 34, 35, 36

41, 42, 43, 44, 45, 46

61, 62, 63, 64, 65, 66}.
Therefore we have #S = 6× 6 = 36. If the dice are fair I guess that all 36 possible outcomes
are equally likely. Therefore we can use the formula P (E) = #E/#S.

(b) The event “double six” corresponds to E = {66}, so that #E = 1. Thus

P (“double six”) = P (E) = #E/#S = 1/36.

3. The Chevalier de Méré considered the following two games/experiments:

(1) Roll a fair six-sided die 4 times.
(2) Roll a pair of fair six-sided dice 24 times.

For the first experiment, let X be the number of “sixes” that you get. Apply counting and
axioms of probability to compute P (X ≥ 1). For the second experiment let Y be the number
of “double sixes” that you get. Apply similar ideas to compute P (Y ≥ 1). Which of these
two events is more likely? [Hint: You can think of a fair six-sided die as a bised coin with
“heads”=“six” and “tails”=“not six,” so that P (“heads”) = 1/6 and P (“tails”) = 5/6. You
will find that it is easier to compute P (X = 0) and P (Y = 0).]

Solution: All of the work has been done. For game (1) we think of “rolling a fair six-sided
die” as a fancy coin flip with “heads”=“six” and “tails”=“not six.” Roll the die n = 4 times
and let X =“number of sixes we get.” Since p = P (“heads”) = 1/6, Problem 1 tells us that

P (“at least one six”) = P (X ≥ 1) = 1−P (X = 0) = 1−(1−p)n = 1−
(

5

6

)4

≈ 0.5177 = 51.77%.



For game (2) we think of “rolling a pair of fair six-sided dice” as a fancy coin flip with
“heads”=“double six” and “tails”=“not double six.” Roll the fancy coin n = 24 times and let
Y =“number of double sixes we get.” From Problem 2 we know that p = P (“double six”) =
1/36, hence Problem 1 tells us that

P (“at least one double six”) = P (Y ≥ 1) = 1− P (Y = 0) = 1−
(

35

36

)24

≈ 0.4914 = 49.14%.

[Remark: The Chevalier’s mathematical intuition told him that these two events should be equally
likely, but his gambling experience told him that “X ≥ 1” happened more often than “Y ≥ 1.” The
subject of mathematical probability was born when Fermat and Pascal came up with a mathematical
theory (the one we just used) that does agree with experience. The most important thing is to
make accurate predictions.]


