Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman.

- Section 1.1, Exercises 4,5,6,7,9,12.

Solutions to Book Problems.

1.1-4. A fair coin is tossed four times and the sequence of heads and tails is observed.
(a) The sample space is

$$
\begin{array}{r}
S=\{T T T T, H T T T, T H T T, T T H T, T T T H, H H T T, H T H T, H T T H, \\
T H H T, T H T H, T T H H, T H H H, H T H H, H H T H, H H H T, H H H H\}
\end{array}
$$

(b) Consider the following events:
$A=\{$ at least 3 heads $\}$
$=\{T H H H, H T H H, H H T H, H H H T, H H H H\}$
$B=\{$ at most 2 heads $\}$
$=\{T T T T, H T T T, T H T T, T T H T, T T T H, H H T T, H T H T, H T T H, T H H T, T H T H, T T H H\}$
$C=\{$ heads on the third toss $\}$
$=\{T T H T, H T H T, T H H T, T T H H, T H H H, H T H H, H H H T, H H H H\}$
$D=\{1$ head and 3 tails $\}$
$=\{H T T T, T H T T, T T H T, T T T H\}$.
We note that $\# S=16, \# A=5, \# B=11, \# C=8$ and $\# D=4$ so that

$$
P(A)=\frac{5}{16}, \quad P(B)=\frac{11}{16}, \quad P(C)=\frac{8}{16} \quad \text { and } \quad P(D)=\frac{4}{16} .
$$

We are also asked to consider the following events:
$A \cap B=\{$ at least 3 heads AND at most 2 heads $\}=\emptyset$
$A \cap C=\{$ at least 3 heads AND heads on the third toss $\}$

$$
=\{T H H H, H T H H, H H H T, H H H H\}
$$

$A \cup C=\{$ at least 3 heads OR heads on the third toss $\}=$ "never mind"
$B \cap D=\{$ at most 2 heads AND 1 head and 3 tails $\}=\{1$ head and 3 tails $\}=D$.
We observe that $\#(A \cap B)=0, \#(A \cap C)=4$ and $\#(B \cap D)=\# D=4$ so that

$$
P(A \cap B)=\frac{0}{16}, \quad P(A \cap C)=\frac{4}{16} \quad \text { and } \quad P(B \cap D)=\frac{4}{16} .
$$

I said "never mind" for the set $A \cup C$ because we don't need to list all the elements. Indeed, we already know that $P(A)=5 / 16, P(C)=8 / 16$ and $P(A \cap C)=4 / 16$, so that

$$
P(A \cup C)=P(A)+P(C)-P(A \cap C)=\frac{5+8-4}{16}=\frac{9}{16} .
$$

1.1-5. We roll a fair six-sided die until we see a 3 . Consider the events

$$
\begin{aligned}
& A=\{\text { we get a } 3 \text { on the first roll }\} \\
& B=\{\text { at least two rolls are required to see a } 3\} .
\end{aligned}
$$

If the die is fair then we observe that $P(A)=1 / 6$. We also observe that the events A and B are complementary because they are mutually exclusive and they exhaust all the possible outcomes. Therefore we conclude that

$$
P(A \cup B)=1 \quad \text { and } \quad P(B)=1-P(A)=1-\frac{1}{6}=\frac{5}{6} .
$$

1.1-6. Consider two events A, B such that

$$
P(A)=0.4, \quad P(B)=0.5 \quad \text { and } \quad P(A \cap B)=0.3
$$

(a) Then we have

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.4+0.5-0.3=0.6 \text {. }
$$

(b) Note that we can decompose the event A into two disjoint pieces by looking at the stuff that's inside B or outside B :

$$
A=(A \cap B) \cup\left(A \cap B^{\prime}\right) .
$$

[You should draw a Venn diagram to get a feeling for this.] Thus we have

$$
\begin{aligned}
P(A) & =P(A \cap B)+P\left(A \cap B^{\prime}\right) \\
P(A)-P(A \cap B) & =P\left(A \cap B^{\prime}\right) \\
0.4-0.3 & =P\left(A \cap B^{\prime}\right) \\
0.1 & =P\left(A \cap B^{\prime}\right) .
\end{aligned}
$$

(c) De Morgan's law says that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$. That is, the stuff that is not in $(A$ AND B) is the same as the stuff that is (not in A) OR (not in B). [You should draw a Venn diagram to get a feeling for this.] Thus we have

$$
P\left(A^{\prime} \cup B^{\prime}\right)=1-P(A \cap B)=1-0.3=0.7 \text {. }
$$

1.1-7. Consider two events A, B such that

$$
P(A \cup B)=0.76 \quad \text { and } \quad P\left(A \cup B^{\prime}\right)=0.87
$$

We want to find $P(A)$. How can we do this? Well, we saw in the previous problem that A can be decomposed by the stuff inside/outside of B :

$$
A=(A \cap B) \cup\left(A \cap B^{\prime}\right) .
$$

And we can do the same trick to divide up A^{\prime} in terms of B and B^{\prime} :

$$
A^{\prime}=\left(A^{\prime} \cap B\right) \cup\left(A^{\prime} \cap B^{\prime}\right) .
$$

It follows from this that

$$
P(A)=1-P\left(A^{\prime}\right)=1-\left[P\left(A^{\prime} \cap B\right)+P\left(A^{\prime} \cap B^{\prime}\right)\right] .
$$

So what? Well, de Morgan's law also tells us that $\left(A^{\prime} \cap B\right)=\left(A \cup B^{\prime}\right)^{\prime}$ and $\left(A^{\prime} \cap B^{\prime}\right)=(A \cup B)^{\prime}$, so that

$$
\begin{aligned}
& P\left(A^{\prime} \cap B\right)=1-P\left(A \cup B^{\prime}\right), \\
& P\left(A^{\prime} \cap B^{\prime}\right)=1-P(A \cup B) .
\end{aligned}
$$

Finally, putting everything together gives

$$
\begin{aligned}
P(A) & =1-\left[P\left(A^{\prime} \cap B\right)+P\left(A^{\prime} \cap B^{\prime}\right)\right] \\
& =1-\left[\left[1-P\left(A \cup B^{\prime}\right)\right]+[1-P(A \cup B)]\right] \\
& =P\left(A \cup B^{\prime}\right)+P(A \cup B)-1 \\
& =0.87+0.76-1 \\
& =0.63 .
\end{aligned}
$$

1.1-9. We roll a fair six-sided die 3 times. Consider the following events:

$$
\begin{aligned}
& A_{1}=\{1 \text { or } 2 \text { on the first roll }\} \\
& A_{2}=\{3 \text { or } 4 \text { on the second roll }\} \\
& A_{3}=\{5 \text { or } 6 \text { on the third roll }\} .
\end{aligned}
$$

Luckily we don't have to analyze this experiment ourselves because the book just tells us that:

- $P\left(A_{i}\right)=1 / 3$ for all i.
- $P\left(A_{i} \cap A_{j}\right)=(1 / 3)^{2}$ for all $i \neq j$.
- $P\left(A_{1} \cap A_{2} \cap A_{3}\right)=(1 / 3)^{3}$.

Now we are asked to find $P\left(A_{1} \cup A_{2} \cup A_{3}\right)$. At this point you can just quote Theorem 1.1-6 from the book. However, I'll do it myself from scratch. First we have

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \cup A_{3}\right) & =P\left(A_{1} \cup\left(A_{2} \cup A_{3}\right)\right) \\
& =P\left(A_{1}\right)+P\left(A_{2} \cup A_{3}\right)-P\left(A_{1} \cap\left(A_{2} \cup A_{3}\right)\right)
\end{aligned}
$$

and

$$
P\left(A_{2} \cup A_{3}\right)=P\left(A_{2}\right)+P\left(A_{3}\right)-P\left(A_{2} \cap A_{3}\right) .
$$

Then by rewriting $A_{1} \cap\left(A_{2} \cup A_{3}\right)=\left(A_{1} \cap A_{2}\right) \cup\left(A_{1} \cap A_{3}\right)$ we have

$$
\begin{aligned}
P\left(A_{1} \cap\left(A_{2} \cup A_{3}\right)\right) & =P\left(\left(A_{1} \cap A_{2}\right) \cup\left(A_{1} \cap A_{3}\right)\right) \\
& =P\left(A_{1} \cap A_{2}\right)+P\left(A_{1} \cap A_{3}\right)-P\left(\left(A_{1} \cap A_{2}\right) \cap\left(A_{1} \cap A_{3}\right)\right) \\
& =P\left(A_{1} \cap A_{2}\right)+P\left(A_{1} \cap A_{3}\right)-P\left(A_{1} \cap A_{2} \cap A_{3}\right) .
\end{aligned}
$$

Putting everything together gives

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \cup A_{3}\right) & =P\left(A_{1}\right)+P\left(A_{2} \cup A_{3}\right)-P\left(A_{1} \cap\left(A_{2} \cup A_{3}\right)\right) \\
& =P\left(A_{1}\right)+\left[P\left(A_{2}\right)+P\left(A_{3}\right)-P\left(A_{2} \cap A_{3}\right)\right] \\
& -\left[P\left(A_{1} \cap A_{2}\right)+P\left(A_{1} \cap A_{3}\right)-P\left(A_{1} \cap A_{2} \cap A_{3}\right)\right],
\end{aligned}
$$

or, in other words, $P\left(A_{1} \cup A_{2} \cup A_{3}\right)$ equals

$$
P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)-P\left(A_{1} \cap A_{2}\right)-P\left(A_{1} \cap A_{3}\right)-P\left(A_{2} \cap A_{3}\right)+P\left(A_{1} \cap A_{2} \cap A_{3}\right) .
$$

Finally, since we know value of each term in this sum, we get

$$
P\left(A_{1} \cup A_{2} \cup A_{3}\right)=3 \cdot\left(\frac{1}{3}\right)-3 \cdot\left(\frac{1}{3}\right)^{2}+1 \cdot\left(\frac{1}{3}\right)^{3}
$$

Wow, that really reminds me of the third row of Pascal's triangle. Indeed, note that

$$
\begin{aligned}
\left(1-\frac{1}{3}\right)^{3} & =1+3 \cdot\left(\frac{-1}{3}\right)+3 \cdot\left(\frac{-1}{3}\right)^{2}+1 \cdot\left(\frac{-1}{3}\right)^{3} \\
& =1-3 \cdot\left(\frac{1}{3}\right)+3 \cdot\left(\frac{1}{3}\right)^{2}-1 \cdot\left(\frac{1}{3}\right)^{3}
\end{aligned}
$$

and hence we have

$$
P\left(A_{1} \cup A_{2} \cup A_{3}\right)=1-\left(1-\frac{1}{3}\right)^{3}=1-\left(\frac{2}{3}\right)^{3}=1-\frac{8}{27}=\frac{19}{27} .
$$

[Remark: Maybe there's a shorter way to do this, but it was good practice to do it the long way.]
1.1-12. This one is just a "thinking problem," since we aren't told precisely what "selected randomly" means in this case. Just use your intuition.

Suppose a real number x is "selected randomly" from the closed interval $[0,1]$. We are supposed to assume that all possible choices are "equally likely," whatever that means. Since there are infinitely many possible choices, this suggests that the probability of any particular x is $1 / \infty$, or 0 . Ok, I guess.

We know that $P([0,1])=1$ because $[0,1]$ is the whole sample space. It also seems intuitively clear that $P([0,1 / 2])=P([1 / 2,1])=1 / 2$. (The number is equally likely to be in the left half or the right half of the interval.) More generally, it seems that the probability that x lies in a particular line segment is just the length of the line segment (whether or not the endpoints of the line segment are included).

So here are my answers:
(a) $P(\{x: 0 \leq x \leq 1 / 3\})=1 / 3$,
(b) $P(\{x: 1 / 3 \leq x \leq 1\})=2 / 3$,
(c) $P(\{x: x=1 / 3\})=0$,
(d) $P(\{x: 1 / 2<x<5\})=P(\{x: 1 / 2<x \leq 1\})+P(\{x: 1 \leq 5\})=1 / 2+0=1 / 2$.
[Remark: We will discuss "continuous probability distributions" in detail later.]

Additional Problems.

1. Consider a biased coin with P ("heads") $=p$ and P ("tails") $=1-p$. Suppose that you flip the coin n times and let X be the number of heads that you get. Compute $P(X \geq 1)$. [Hint: Observe that $P(X \geq 1)+P(X=0)=1$.]

Solution: Recall from the course notes that the probability of getting exactly k heads is

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Thus we are asked to compute the following sum:

$$
P(X \geq 1)=\sum_{k=1}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}
$$

That seems really hard so instead we use the formula

$$
P(X \geq 1)=1-P(X=0)=1-\binom{n}{0} p^{0}(1-p)^{n}=1-(1-p)^{n} .
$$

Alternatively, we can compute $P(X=0)$ by observing that " $X=0$ " corresponds to the event $\{T T T \cdots T\}$. Since the probability of each "tail" is $(1-p)$ and since the coin flips are "independent" we see that

$$
P(X=0)=P(T T T \cdots T)=P(T) P(T) \cdots P(T)=(1-p)(1-p) \cdots(1-p)=(1-p)^{n} .
$$

[Remark: Compare the formula $P(X=0)=1-(1-p)^{n}$ to Exercise 1.1-9 above. Can you see how to obtain the answer to 1.1-9 by plugging in $p=1 / 3$ and $n=3$? We can think of each die roll as a fancy coin flip with P ("heads") $=1 / 3$. The definition of "heads" changes on each roll, but I guess that doesn't matter.]
2. Suppose that you roll a pair of fair six-sided dice.
(a) Write down the elements of the sample space S. What is $\# S$? Are the outcomes equally likely?
(b) Compute the probability of getting a "double six." [Hint: Let $E \subseteq S$ be the subset of outcomes that correspond to getting a "double six." Compute $P(E)=\# E / \# S$.]

Solution: (a) The sample space is

$$
\begin{aligned}
S=\{ & 11,12,13,14,15,16 \\
& 21,22,23,24,25,26 \\
& 31,32,33,34,35,36 \\
& 41,42,43,44,45,46 \\
& 61,62,63,64,65,66\} .
\end{aligned}
$$

Therefore we have $\# S=6 \times 6=36$. If the dice are fair I guess that all 36 possible outcomes are equally likely. Therefore we can use the formula $P(E)=\# E / \# S$.
(b) The event "double six" corresponds to $E=\{66\}$, so that $\# E=1$. Thus

$$
P(\text { "double six" })=P(E)=\# E / \# S=1 / 36 \text {. }
$$

3. The Chevalier de Méré considered the following two games/experiments:
(1) Roll a fair six-sided die 4 times.
(2) Roll a pair of fair six-sided dice 24 times.

For the first experiment, let X be the number of "sixes" that you get. Apply counting and axioms of probability to compute $P(X \geq 1)$. For the second experiment let Y be the number of "double sixes" that you get. Apply similar ideas to compute $P(Y \geq 1)$. Which of these two events is more likely? [Hint: You can think of a fair six-sided die as a bised coin with "heads" $=$ "six" and "tails" $=$ "not six," so that $P($ "heads" $)=1 / 6$ and $P($ "tails" $)=5 / 6$. You will find that it is easier to compute $P(X=0)$ and $P(Y=0)$.]

Solution: All of the work has been done. For game (1) we think of "rolling a fair six-sided die" as a fancy coin flip with "heads" $=$ "six" and "tails" = "not six." Roll the die $n=4$ times and let $X=$ "number of sixes we get." Since $p=P$ ("heads" $)=1 / 6$, Problem 1 tells us that
$P($ "at least one six" $)=P(X \geq 1)=1-P(X=0)=1-(1-p)^{n}=1-\left(\frac{5}{6}\right)^{4} \approx 0.5177=51.77 \%$.

For game (2) we think of "rolling a pair of fair six-sided dice" as a fancy coin flip with "heads" ="double six" and "tails" ="not double six." Roll the fancy coin $n=24$ times and let $Y=$ "number of double sixes we get." From Problem 2 we know that $p=P($ "double six" $)=$ $1 / 36$, hence Problem 1 tells us that
$P($ "at least one double six" $)=P(Y \geq 1)=1-P(Y=0)=1-\left(\frac{35}{36}\right)^{24} \approx 0.4914=49.14 \%$.
[Remark: The Chevalier's mathematical intuition told him that these two events should be equally likely, but his gambling experience told him that " $X \geq 1$ " happened more often than " $Y \geq 1$." The subject of mathematical probability was born when Fermat and Pascal came up with a mathematical theory (the one we just used) that does agree with experience. The most important thing is to make accurate predictions.]

