Version A

Problem 1. Let X be the continuous random variable defined by the following pdf:

$$
f(x)= \begin{cases}1-x / 2 & \text { when } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the mean $\mu=E[X]$.

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x \cdot f(x) d x=\int_{0}^{2} x(1-x / 2) d x \\
& =\int_{0}^{2}\left(x-x^{2} / 2\right) d x=\left.\left(x^{2} / 2-x^{3} / 6\right)\right|_{0} ^{2}=4 / 2-8 / 6=2 / 3 .
\end{aligned}
$$

(b) Compute the variance $\sigma^{2}=\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$.

First we compute the second moment:

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} \cdot f(x) d x=\int_{0}^{2} x^{2}(1-x / 2) d x \\
& =\int_{0}^{2}\left(x^{2}-x^{3} / 2\right) d x=\left.\left(x^{3} / 3-x^{4} / 8\right)\right|_{0} ^{2}=8 / 3-16 / 8=2 / 3 .
\end{aligned}
$$

Then we have:

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=(2 / 3)-(2 / 3)^{2}=2 / 9
$$

(c) Draw the graph of $f(x)$, labeled with the mean μ and standard deviation σ.

From parts (a) and (b) we have $\mu=2 / 3=0.67$ and $\sigma=\sqrt{2 / 9}=0.47$. Here is the picture:

Problem 2. Let $X_{1}, X_{2}, \ldots, X_{16}$ be independent samples from an underlying distribution with mean $\mu=10$ and standard deviation $\sigma=8$. Consider the sample mean:

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{16}}{16} .
$$

(a) Compute the expected value of the sample mean: $E[\bar{X}]$.

Since expected value is linear we have

$$
E[\bar{X}]=\frac{E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{16}\right]}{16}=\frac{10+10+\cdots+10}{16}=10 .
$$

(b) Compute the variance of the sample mean: $\operatorname{Var}(\bar{X})$.

Since the observations X_{i} are independent we have

$$
\operatorname{Var}(\bar{X})=\frac{\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{16}\right)}{16^{2}}=\frac{8^{2}+8^{2}+\cdots+8^{2}}{16^{2}}=4 .
$$

(c) Assuming that $n=16$ is large enough, use the Central Limit Theorem to estimate the probability $P(8<\bar{X}<11)$.

Assuming that \bar{X} is approximately normal, we find that $(\bar{X}-E[\bar{X}]) / \sqrt{\operatorname{Var}(\bar{X})}=$ $(\bar{X}-10) / 2$ is approximately standard normal. Hence

$$
\begin{aligned}
P(8<\bar{X}<11) & =P(-2<\bar{X}-10<1)=P\left(-1<\frac{\bar{X}-10}{2}<0.5\right) \\
& \approx \Phi(0.5)-\Phi(-1)=\Phi(0.5)-[1-\Phi(1)] \\
& =0.6915-(1-0.8413)=53.28 \% .
\end{aligned}
$$

[Remark: I treated the underlying distribution as continuous.]
Problem 3. Suppose that Z is a standard normal random variable. Use the provided tables to solve the following problems.
(a) Find α such that $P(Z \geq 0.5)=\alpha$ and draw a picture to illustrate your answer.

(b) Find t such that $P(Z \leq t)=0.25$ and draw a picture to illustrate your answer.

(c) Find c such that $P(-c \leq Z \leq c)=0.75$ and draw a picture to illustrate your answer.

Problem 4. Flip a fair coin 20 times and let X be the number of heads that you get.
(a) Write a formula for the exact value of $P(X \leq 12)$.

$$
P(X \leq 12)=\sum_{k=0}^{12}\binom{20}{k} / 2^{20}
$$

[Remark: My laptop evaluates this to 86.84%.]
(b) Since $n p$ and $n(1-p)$ are both ≥ 10 we can assume that X is approximately normal. Use a continuity correction to approximate the probability from part (a) by the integral of some function:

$$
P(X \leq 12) \approx \int_{-0.5}^{12.5} \frac{1}{\sqrt{10 \pi}} e^{-(x-10)^{2} / 10} d x
$$

[Remark: The lower limit $-\infty$ gives the same answer to many decimal places.]
(c) Use the provided tables to compute the value of this integral.

Note that X is binomial with $n=20$ and $p=1 / 2$, hence with $\mu=n p=10$ and $\sigma^{2}=n p(1-p)=5$. Let X^{\prime} be a continuous random variable with the same mean and standard deviation so that $\left(X^{\prime}-10\right) / \sqrt{5}$ is standard normal. Then we have

$$
\begin{aligned}
P(X \leq 12) & \approx P\left(-\infty \leq X^{\prime} \leq 12.5\right) \\
& =P\left(\frac{X^{\prime}-10}{\sqrt{5}} \leq \frac{12.5-10}{\sqrt{5}}\right)=P\left(\frac{X^{\prime}-10}{\sqrt{5}} \leq 1.12\right) \\
& =\Phi(1.12)=86.86 \% .
\end{aligned}
$$

Problem 5. Suppose that the following five independent observations come from a normal distribution with mean μ and variance σ^{2} :

1.2	1.5	2.1	2.6	1.6

(a) Compute the sample mean \bar{X} and sample standard deviation S.

$$
\begin{aligned}
\bar{X} & =\frac{1.2+1.5+2.1+2.6+1.6}{5}=1.8, \\
S^{2} & =\frac{(1.2-1.8)^{2}+(1.5-1.8)^{2}+(2.1-1.8)^{2}+(2.6-1.8)^{2}+(1.6-1.8)^{2}}{4}=0.305, \\
S & =\sqrt{0.305}=0.5522 .
\end{aligned}
$$

(b) Suppose for some reason that you know the population standard deviation $\sigma=0.5$. In this case, find an exact 95% confidence interval for the unknown μ.

$$
\bar{X} \pm z_{0.05 / 2} \cdot \frac{\sigma}{\sqrt{n}}=1.8 \pm 1.96 \cdot \frac{0.5}{\sqrt{5}}=1.8 \pm 0.438 .
$$

(c) Now suppose that the population standard deviation σ is unknown. In this case, find an exact 95% confidence interval for the unknown μ.

$$
\bar{X} \pm t_{0.05 / 2}(n-1) \cdot \frac{S}{\sqrt{n}}=1.8 \pm 2.776 \cdot \frac{0.5522}{\sqrt{5}}=1.8 \pm 0.686 .
$$

Version B

Problem 1. Let X be the continuous random variable defined by the following pdf:

$$
f(x)= \begin{cases}x / 2 & \text { when } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the mean $\mu=E[X]$.

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x \cdot f(x) d x=\int_{0}^{2} x(x / 2) d x \\
& =\int_{0}^{2} x^{3} / 6 d x=\left.\left(x^{2} / 6\right)\right|_{0} ^{2}=8 / 6=4 / 3 .
\end{aligned}
$$

(b) Compute the variance $\sigma^{2}=\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$.

First we compute the second moment:

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} \cdot f(x) d x=\int_{0}^{2} x^{2}(x / 2) d x \\
& =\int_{0}^{2} x^{3} / 2 d x=\left.\left(x^{4} / 8\right)\right|_{0} ^{2}=16 / 8=2 .
\end{aligned}
$$

Then we have:

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=2-(4 / 3)^{2}=2 / 9
$$

(c) Draw the graph of $f(x)$, labeled with the mean μ and standard deviation σ.

From parts (a) and (b) we have $\mu=4 / 3=1.33$ and $\sigma=\sqrt{2 / 9}=0.47$.
Here is the picture:

Problem 2. Let $X_{1}, X_{2}, \ldots, X_{16}$ be independent samples from an underlying distribution with mean $\mu=12$ and standard deviation $\sigma=8$. Consider the sample mean:

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{16}}{16} .
$$

(a) Compute the expected value of the sample mean: $E[\bar{X}]$.

Since expected value is linear we have

$$
E[\bar{X}]=\frac{E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{16}\right]}{16}=\frac{12+12+\cdots+12}{16}=12 .
$$

(b) Compute the variance of the sample mean: $\operatorname{Var}(\bar{X})$.

Since the observations X_{i} are independent we have

$$
\operatorname{Var}(\bar{X})=\frac{\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{16}\right)}{16^{2}}=\frac{8^{2}+8^{2}+\cdots+8^{2}}{16^{2}}=4 .
$$

(c) Assuming that $n=16$ is large enough, use the Central Limit Theorem to estimate the probability $P(11<\bar{X}<13)$.

Assuming that \bar{X} is approximately normal, we find that $(\bar{X}-E[\bar{X}]) / \sqrt{\operatorname{Var}(\bar{X})}=$ $(\bar{X}-12) / 2$ is approximately standard normal. Hence

$$
\begin{aligned}
P(11<\bar{X}<13) & =P(-1<\bar{X}-12<1)=P\left(-0.5<\frac{\bar{X}-12}{2}<0.5\right) \\
& \approx \Phi(0.5)-\Phi(-0.5)=\Phi(0.5)-[1-\Phi(0.5)] \\
& =0.6915-(1-0.6915)=38.30 \% .
\end{aligned}
$$

[Remark: I treated the underlying distribution as continuous.]
Problem 3. Suppose that Z is a standard normal random variable. Use the provided tables to solve the following problems.
(a) Find α such that $P(Z \leq 0.5)=\alpha$ and draw a picture to illustrate your answer.

(b) Find t such that $P(Z \geq t)=0.6$ and draw a picture to illustrate your answer.

(c) Find c such that $P(-c \leq Z \leq c)=0.25$ and draw a picture to illustrate your answer.

Problem 4. Flip a fair coin 20 times and let X be the number of heads that you get.
(a) Write a formula for the exact value of $P(X \geq 9)$.

$$
P(X \geq 9)=\sum_{k=9}^{20}\binom{20}{k} / 2^{20}
$$

[Remark: My laptop evaluates this to 74.83%.]
(b) Since $n p$ and $n(1-p)$ are both ≥ 10 we can assume that X is approximately normal. Use a continuity correction to approximate the probability from part (a) by the integral of some function:

$$
P(X \geq 9) \approx \int_{8.5}^{20.5} \frac{1}{\sqrt{10 \pi}} e^{-(x-10)^{2} / 10} d x .
$$

[Remark: The upper limit ∞ gives the same answer to many decimal places.]
(c) Use the provided tables to compute the value of this integral.

Note that X is binomial with $n=20$ and $p=1 / 2$, hence with $\mu=n p=10$ and $\sigma^{2}=n p(1-p)=5$. Let X^{\prime} be a continuous random variable with the same mean and standard deviation so that $\left(X^{\prime}-10\right) / \sqrt{5}$ is standard normal. Then we have

$$
\begin{aligned}
P(X \geq 9) & \approx P\left(\infty \geq X^{\prime} \geq 8.5\right) \\
& =P\left(\frac{X^{\prime}-10}{\sqrt{5}} \geq \frac{8.5-10}{\sqrt{5}}\right)=P\left(\frac{X^{\prime}-10}{\sqrt{5}} \geq-0.67\right) \\
& =1-\Phi(-0.67)=\Phi(0.67)=74.86 \% .
\end{aligned}
$$

Problem 5. Suppose that the following five independent observations come from a normal distribution with mean μ and variance σ^{2} :

1.4	1.5	2.1	2.4	1.6

(a) Compute the sample mean \bar{X} and sample standard deviation S.

$$
\begin{aligned}
\bar{X} & =\frac{1.4+1.5+2.1+2.4+1.6}{5}=1.8, \\
S^{2} & =\frac{(1.4-1.8)^{2}+(1.5-1.8)^{2}+(2.1-1.8)^{2}+(2.4-1.8)^{2}+(1.6-1.8)^{2}}{4}=0.185, \\
S & =\sqrt{0.185}=0.4301 .
\end{aligned}
$$

(b) Suppose for some reason that you know the population standard deviation $\sigma=0.5$. In this case, find an exact 95% confidence interval for the unknown μ.

$$
\bar{X} \pm z_{0.05 / 2} \cdot \frac{\sigma}{\sqrt{n}}=1.8 \pm 1.96 \cdot \frac{0.5}{\sqrt{5}}=1.8 \pm 0.438 .
$$

(c) Now suppose that the population standard deviation σ is unknown. In this case, find an exact 95% confidence interval for the unknown μ.

$$
\bar{X} \pm t_{0.05 / 2}(n-1) \cdot \frac{S}{\sqrt{n}}=1.8 \pm 2.776 \cdot \frac{0.4301}{\sqrt{5}}=1.8 \pm 0.534 .
$$

