Version A

Problem 1. A Bernoulli random variable B is defined by the following table:

k	0	1
$P(B=k)$	$1-p$	p

(a) Compute the expected value $E[B]$.

The definition of expected value gives

$$
E[B]=0 P(B=0)+1 P(B=1)=0(1-p)+1 p=p .
$$

(b) Compute the variance $\operatorname{Var}(B)$.

We compute the second moment of B and then compute the variance:

$$
\begin{aligned}
E\left[B^{2}\right] & =0^{2} P(B=0)+1^{2} P(B=1)=0^{2}(1-p)+1^{2} p=p, \\
\operatorname{Var}(B) & =E\left[B^{2}\right]-E[B]^{2}=p-p^{2}=p(1-p) .
\end{aligned}
$$

(c) Let $X=X_{1}+X_{2}+\cdots+X_{n}$ where the random variables X_{i} are independent and each X_{i} has the same distribution as B. Compute the expected value and variance.

We use the linearity of expectation to compute

$$
E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]=p+p+\cdots+p=n p .
$$

Since the X_{i} are independent we also have

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right) \\
& =p(1-p)+p(1-p)+\cdots+p(1-p)=n p(1-p) .
\end{aligned}
$$

Problem 2. There are 2 blue balls and 3 red balls in an urn. Suppose you reach in and grab 2 balls at random. Let X be the number of blue balls that you get.
(a) Compute the probability mass function of X. (Use the back of the page for rough work if necessary.)

k	0	1	2
$P(X=k)$	$\frac{\binom{2}{0}\binom{3}{2}}{\binom{5}{2}}=\frac{3}{10}$	$\binom{2}{1}\binom{3}{1}$ $\binom{5}{2}$$=\frac{6}{10}$	$\frac{\binom{2}{2}\binom{3}{0}}{\binom{5}{2}}=\frac{1}{10}$

(b) Compute the mean and standard deviation of X.

We compute the first two moments, then the variance and standard deviation:

$$
\begin{aligned}
E[X] & =0 \cdot \frac{3}{10}+1 \cdot \frac{6}{10}+2 \cdot \frac{1}{10}=8 / 10=4 / 5, \\
E\left[X^{2}\right] & =0^{2} \cdot \frac{3}{10}+1^{2} \cdot \frac{6}{10}+2^{2} \cdot \frac{1}{10}=10 / 10=1, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=1-(4 / 5)^{2}=25 / 25-16 / 25=9 / 25, \\
\sigma & =\sqrt{\operatorname{Var}(X)}=\sqrt{9 / 25}=3 / 5 .
\end{aligned}
$$

(c) Draw a picture of the pmf, showing the mean and standard deviation.

Problem 3. Let X and Y be binomial random variables satisfying
$P(X=k)=\binom{3}{k}\left(\frac{1}{2}\right)^{k}\left(1-\frac{1}{2}\right)^{3-k} \quad$ and $\quad P(Y=\ell)=\binom{4}{\ell}\left(\frac{1}{3}\right)^{\ell}\left(1-\frac{1}{3}\right)^{4-\ell}$.
Assume that X and Y are independent.
(a) Tell me the value of $E[X+Y]$.

We know (for example, from Problem 1) that the expected value of a binomial random variable is $n p$. Then by linearity we have

$$
E[X+Y]=E[X]+E[Y]=3(1 / 2)+4(1 / 3)=3 / 2+4 / 3=17 / 6 .
$$

(b) Tell me the value of $\operatorname{Var}(X+Y)$.

We know (for example, from Problem 1) that the variance of a binomial random variable is $n p(1-p)$. Then since X and Y are independent we have

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y) \\
& =3(1 / 2)(1 / 2)+4(1 / 3)(2 / 3)=3 / 4+8 / 9=59 / 36 .
\end{aligned}
$$

(c) Tell me the value of $E\left[(X+Y)^{2}\right]$.

There are many ways to do this. Here's one way:

$$
\begin{aligned}
E\left[(X+Y)^{2}\right]-E[X+Y]^{2} & =\operatorname{Var}(X+Y) \\
E\left[(X+Y)^{2}\right] & =\operatorname{Var}(X+Y)+E[X+Y]^{2} \\
& =59 / 36+(17 / 6)^{2}=348 / 36=29 / 3 .
\end{aligned}
$$

Problem 4. Consider a coin with P (heads) $=1 / 3$. Start flipping the coin and let X be the number of flips until you see the first head.
(a) Compute $P(X=5)$.

The pmf of this geometric random variable is $P(X=k)=(1-p)^{k-1} p=(2 / 3)^{k-1}(1 / 3)=$ $2^{k-1} / 3^{k}$. Plugging in $k=5$ gives

$$
P(X=5)=2^{4} / 3^{5}=16 / 243 \approx 6.58 \% .
$$

(b) Compute $P(X>5)$.

By using the geometric series, one can show that $P(X>k)=(1-p)^{k}=(2 / 3)^{k}$. Plugging in $k=5$ gives

$$
P(X>5)=(2 / 3)^{5}=32 / 243 \approx 13.17 \% .
$$

(c) Find the probability that X is within one standard deviation of its mean. [Hint: $\mu=1 / p$ and $\sigma^{2}=(1-p) / p^{2}$.]

The mean and standard deviation are

$$
\mu=1 / p=3 \quad \text { and } \quad \sigma=(\sqrt{1-p}) / p=\sqrt{2 / 3} \cdot 3=\sqrt{6} .
$$

Since $\sqrt{6}$ is between 2 and 3 we have

$$
\begin{aligned}
P(\mu-\sigma<X<\mu+\sigma) & =P(0 \leq X \leq 5) \\
& =1-P(X>5)=1-32 / 243=211 / 243 \approx 86.83 \% .
\end{aligned}
$$

Problem 5. Let X, Y be random variables with joint pmf given by the following table:

$X \backslash Y$	-1	0	1
1	$1 / 10$	$1 / 10$	$2 / 10$
2	$2 / 10$	$1 / 10$	$3 / 10$

(a) Compute the probability mass function of X :

k	1	2
$P(X=k)$	$\frac{4}{10}=\frac{2}{5}$	$\frac{6}{10}=\frac{3}{5}$

(b) Compute the expected value $E[X]$ and the variance $\operatorname{Var}(X)$.

$$
\begin{aligned}
E[X] & =1 \cdot \frac{2}{5}+2 \cdot \frac{3}{5}=8 / 5, \\
E\left[X^{2}\right] & =1^{2} \cdot \frac{2}{5}+2^{2} \cdot \frac{3}{5}=14 / 5, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=14 / 5-(8 / 5)^{2}=6 / 25 .
\end{aligned}
$$

(c) Compute the probability mass function of Y :

k	-1	0	1
$P(Y=k)$	$\frac{3}{10}$	$\frac{2}{10}$	$\frac{5}{10}$

(d) Compute the expected value $E[Y]$ and the variance $\operatorname{Var}(Y)$.

$$
\begin{aligned}
E[Y] & =-1 \cdot \frac{3}{10}+0 \cdot \frac{2}{10}+1 \cdot \frac{5}{10}=2 / 10=1 / 5, \\
E\left[Y^{2}\right] & =(-1)^{2} \cdot \frac{3}{10}+0^{2} \cdot \frac{2}{10}+1^{2} \cdot \frac{5}{10}=8 / 10=4 / 5, \\
\operatorname{Var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2}=4 / 5-(1 / 5)^{2}=19 / 25 .
\end{aligned}
$$

(e) Compute the probability mass function of $Z=X Y$:

k	-2	-1	0	1	2
$P(Z=k)$	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{3}{10}$

(f) Compute the expected value $E[Z]=E[X Y]$ and the covariance $\operatorname{Cov}(X, Y)$.

$$
\begin{aligned}
E[X Y] & =-2 \cdot \frac{2}{10}-1 \cdot \frac{1}{10}+0 \cdot \frac{2}{10}+1 \cdot \frac{2}{10}+2 \cdot \frac{3}{10}=3 / 10, \\
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] \cdot E[Y]=(3 / 10)-(8 / 5)(1 / 5)=-1 / 50 .
\end{aligned}
$$

Version B

Problem 1. Same as version A.
Problem 2. There are 3 blue balls and 2 red balls in an urn. Suppose you reach in and grab 2 balls at random. Let X be the number of blue balls that you get.
(a) Compute the probability mass function of X. (Use the back of the page for rough work if necessary.)

k	0	1	2		
$P(X=k)$	$\frac{\binom{3}{0}}{\binom{2}{2}}\binom{1}{2}$			$\frac{1}{10}$	$\frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}}=\frac{6}{10}$
:---		$\frac{\binom{3}{2}\binom{2}{0}}{\binom{5}{2}}=\frac{3}{10}$			
:---					

(b) Compute the mean and standard deviation of X.

We compute the first two moments, then the variance and standard deviation:

$$
\begin{aligned}
E[X] & =0 \cdot \frac{1}{10}+1 \cdot \frac{6}{10}+2 \cdot \frac{3}{10}=12 / 10=6 / 5, \\
E\left[X^{2}\right] & =0^{2} \cdot \frac{1}{10}+1^{2} \cdot \frac{6}{10}+2^{2} \cdot \frac{3}{10}=18 / 10=9 / 5, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=9 / 5-(6 / 5)^{2}=45 / 25-36 / 25=9 / 25, \\
\sigma & =\sqrt{\operatorname{Var}(X)}=\sqrt{9 / 25}=3 / 5 .
\end{aligned}
$$

(c) Draw a picture of the pmf, showing the mean and standard deviation.

Problem 3. Let X and Y be binomial random variables satisfying

$$
P(X=k)=\binom{3}{k}\left(\frac{1}{4}\right)^{k}\left(1-\frac{1}{4}\right)^{3-k} \quad \text { and } \quad P(Y=\ell)=\binom{4}{\ell}\left(\frac{1}{2}\right)^{\ell}\left(1-\frac{1}{2}\right)^{4-\ell} .
$$

Assume that X and Y are independent.
(a) Tell me the value of $E[X+Y]$.

We know (for example, from Problem 1) that the expected value of a binomial random variable is $n p$. Then by linearity we have

$$
E[X+Y]=E[X]+E[Y]=3(1 / 4)+4(1 / 2)=3 / 4+4 / 2=11 / 4 .
$$

(b) Tell me the value of $\operatorname{Var}(X+Y)$.

We know (for example, from Problem 1) that the variance of a binomial random variable is $n p(1-p)$. Then since X and Y are independent we have

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y) \\
& =3(1 / 4)(3 / 4)+4(1 / 2)(1 / 2)=9 / 16+4 / 4=25 / 16 .
\end{aligned}
$$

(c) Tell me the value of $E\left[(X+Y)^{2}\right]$.

There are many ways to do this. Here's one way:

$$
\begin{aligned}
E\left[(X+Y)^{2}\right]-E[X+Y]^{2} & =\operatorname{Var}(X+Y) \\
E\left[(X+Y)^{2}\right] & =\operatorname{Var}(X+Y)+E[X+Y]^{2} \\
& =25 / 16+(11 / 4)^{2}=73 / 8 .
\end{aligned}
$$

Problem 4. Consider a coin with P (heads) $=2 / 3$. Start flipping the coin and let X be the number of flips until you see the first head.
(a) Compute $P(X=5)$.

The pmf of this geometric random variable is $P(X=k)=(1-p)^{k-1} p=(1 / 3)^{k-1}(2 / 3)=$ $2 / 3^{k}$. Plugging in $k=5$ gives

$$
P(X=5)=2 / 3^{5}=2 / 243 \approx 0.8 \% .
$$

(b) Compute $P(X>5)$.

By using the geometric series, one can show that $P(X>k)=(1-p)^{k}=(1 / 3)^{k}$. Plugging in $k=5$ gives

$$
P(X>5)=(1 / 3)^{5}=1 / 243 \approx 0.4 \%
$$

(c) Find the probability that X is within one standard deviation of its mean. [Hint: $\mu=1 / p$ and $\sigma^{2}=(1-p) / p^{2}$.]

The mean and standard deviation are

$$
\mu=1 / p=3 / 2 \quad \text { and } \quad \sigma=(\sqrt{1-p}) / p=\sqrt{1 / 3} \cdot 3 / 2=\sqrt{3} / 2 .
$$

Since $\sqrt{3} / 2$ is between 0.5 and 1 (I'll be generous on this one) we have

$$
\begin{aligned}
P(\mu-\sigma<X<\mu+\sigma) & =P(X=1)+P(X=2) \\
& =(2 / 3)+(1 / 3)(2 / 3)=8 / 9 \approx 88.89 \% .
\end{aligned}
$$

Problem 5. Let X, Y be random variables with joint pmf given by the following table:

$X \backslash Y$	-1	0	1
1	$1 / 10$	$2 / 10$	$1 / 10$
2	$2 / 10$	$1 / 10$	$3 / 10$

(a) Compute the probability mass function of X :

k	1	2
$P(X=k)$	$\frac{4}{10}=\frac{2}{5}$	$\frac{6}{10}=\frac{3}{5}$

(b) Compute the expected value $E[X]$ and the variance $\operatorname{Var}(X)$.

$$
\begin{aligned}
E[X] & =1 \cdot \frac{2}{5}+2 \cdot \frac{3}{5}=8 / 5, \\
E\left[X^{2}\right] & =1^{2} \cdot \frac{2}{5}+2^{2} \cdot \frac{3}{5}=14 / 5, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}=14 / 5-(8 / 5)^{2}=6 / 25 .
\end{aligned}
$$

(c) Compute the probability mass function of Y :

k	-1	0	1
$P(Y=k)$	$\frac{3}{10}$	$\frac{3}{10}$	$\frac{4}{10}$

(d) Compute the expected value $E[Y]$ and the variance $\operatorname{Var}(Y)$.

$$
\begin{aligned}
E[Y] & =-1 \cdot \frac{3}{10}+0 \cdot \frac{3}{10}+1 \cdot \frac{4}{10}=1 / 10, \\
E\left[Y^{2}\right] & =(-1)^{2} \cdot \frac{3}{10}+0^{2} \cdot \frac{3}{10}+1^{2} \cdot \frac{4}{10}=7 / 10, \\
\operatorname{Var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2}=7 / 10-(1 / 10)^{2}=69 / 100 .
\end{aligned}
$$

(e) Compute the probability mass function of $Z=X Y$:

k	-2	-1	0	1	2
$P(Z=k)$	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{1}{10}$	$\frac{3}{10}$

(f) Compute the expected value $E[Z]=E[X Y]$ and the covariance $\operatorname{Cov}(X, Y)$.

$$
\begin{aligned}
E[X Y] & =-2 \cdot \frac{2}{10}-1 \cdot \frac{1}{10}+0 \cdot \frac{3}{10}+1 \cdot \frac{1}{10}+2 \cdot \frac{3}{10}=2 / 10=1 / 5, \\
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] \cdot E[Y]=(2 / 10)-(8 / 5)(1 / 10)=1 / 25 .
\end{aligned}
$$

