Version A

Problem 1. Consider a coin with $P(H)=1 / 3$ and $P(T)=2 / 3$. Suppose that the coin is flipped 8 times in sequence and suppose that the coin has no memory.
(a) What is the probability of getting the sequence THTTTHTT?

Since the coin has no memory, we can multiply the probabilities:

$$
\begin{aligned}
P(\text { THTTTHTT }) & =P(T) P(H) P(T) P(T) P(T) P(H) P(T) P(T) \\
& =P(H)^{2} P(T)^{6} \\
& =\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{6}=\frac{2^{6}}{3^{8}} \approx 0.97 \%
\end{aligned}
$$

(b) What is the probability that H shows up exactly twice?

We use the formula for binomial probability:

$$
\begin{aligned}
P(\text { we get } H \text { twice }) & =\binom{8}{2} P(H)^{2} P(T)^{6} \\
& =\frac{8!}{2!6!}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{6} \\
& =\frac{8 \cdot 7}{2} \cdot \frac{2^{6}}{3^{8}} \approx 27.31 \% .
\end{aligned}
$$

(c) What is the probability that H shows up at least once?

$$
\begin{aligned}
P(\text { at least one head }) & =1-P(\text { all tails }) \\
& =1-\left(\frac{2}{3}\right)^{8} \\
& =\frac{3^{8}-2^{8}}{3^{8}} \approx 96.1 \% .
\end{aligned}
$$

Problem 2. There are two bowls on a table. The first bowl contains 1 red chip and 5 white chips. The second bowl contains 3 red chips and 3 white chips. Your friend walks up to the table and chooses one chip at random. Consider the following events:

$$
\begin{aligned}
B_{1} & =\text { "the chip comes from the first bowl," } \\
B_{2} & =\text { "the chip comes from the second bowl," } \\
R & =\text { "the chip is red." }
\end{aligned}
$$

(a) Compute the probabilities $P\left(R \mid B_{1}\right)$ and $P\left(R \mid B_{2}\right)$.

The first bowl has 1 red chips and 5 white chips, so $P\left(R \mid B_{1}\right)=\frac{1}{1+5}=\frac{1}{6}$.
The second bowl has 3 red chips and 3 white chips, so $P\left(R \mid B_{2}\right)=\frac{3}{3+3}=\frac{3}{6}$.
(b) Suppose that the bowls are equally likely, i.e., $P\left(B_{1}\right)=P\left(B_{2}\right)=1 / 2$. In this case, what is the probability that the chip is red?

First method: If the bowls are equally likely then we just have 12 chips, 4 of which are red. So the probability of red is $P(R)=4 / 12$.

Second method: We use the "law of total probability" to get

$$
\begin{aligned}
R & =\left(R \cap B_{1}\right) \sqcup\left(R \cap B_{2}\right) \\
P(R) & =P\left(R \cap B_{1}\right)+P\left(R \cap B_{2}\right) \\
P(R) & =P\left(B_{1}\right) P\left(R \mid B_{1}\right)+P\left(B_{2}\right) P\left(R \mid B_{2}\right) \\
& =\frac{1}{2} \cdot \frac{1}{6}+\frac{1}{2} \cdot \frac{3}{6}=\frac{4}{12} \approx 33.33 \% .
\end{aligned}
$$

(c) On the other hand, suppose that $P\left(B_{1}\right)=1 / 3$ and $P\left(B_{2}\right)=2 / 3$. Now what is the probability of getting a red chip?

This time we have to use the law of total probability:

$$
\begin{aligned}
R & =\left(R \cap B_{1}\right) \sqcup\left(R \cap B_{2}\right) \\
P(R) & =P\left(R \cap B_{1}\right)+P\left(R \cap B_{2}\right) \\
P(R) & =P\left(B_{1}\right) P\left(R \mid B_{1}\right)+P\left(B_{2}\right) P\left(R \mid B_{2}\right) \\
& =\frac{1}{3} \cdot \frac{1}{6}+\frac{2}{3} \cdot \frac{3}{6}=\frac{7}{18} \approx 38.89 \% .
\end{aligned}
$$

Problem 3. Suppose that a certain state labels each license plate with a sequence of 7 letters taken from the standard alphabet $\{A, B, C, \ldots, Z\}$.
(a) How many license plates are possible if letters are not allowed to be repeated?

$$
\underbrace{26}_{1 \text { st }} \times \underbrace{25}_{\text {2nd }} \times \underbrace{24}_{3 \text { rd }} \times \underbrace{23}_{\text {thh }} \times \underbrace{22}_{5 \text { th }} \times \underbrace{21}_{6 \text { th }} \times \underbrace{20}_{7 \text { th }}=\frac{26!}{19!}
$$

(b) How many ways are there to arrange the letters P, I, Z, Z, A, Z, Z ?

There are 7! ways to arrange the labeled letters $P, I, Z_{1}, Z_{2}, A, Z_{3}, Z_{4}$. Then we have to divide by $1!1!4!1$! to remove the labels:

$$
\binom{7}{1,1,4,1}=\frac{7!}{1!1!4!1!}=210
$$

(c) Suppose that license plates are allowed to contain repeated letters, and that all license plates are equally likely. In this case, what is the probability that a random license plate contains the letters P, I, Z, Z, A, Z, Z, in some order?

If letters can be repeated then the total number of license plates is 26^{7}. Since these are equally likely the probability of getting P, I, Z, Z, A, Z, Z in some order is

$$
\frac{\#(\text { ways to get } P, I, Z, Z, A, Z, Z)}{26^{7}}=\frac{\binom{7}{(1,4,4}}{26^{7}}=\frac{210}{26^{7}} \approx 0 \% .
$$

Problem 4. An urn contains 2 orange balls and 5 purple balls. You reach into the urn and pull out a collection of 3 balls (unordered, and without replacement). Assume that all possible outcomes are equally likely.
(a) What is the size of the sample space?

The sample space S is the set of all possible collections of 3 balls. Since there are $2+5=7$ balls to choose from we have

$$
\binom{7}{3}=\frac{7!}{3!4!}=35
$$

(b) What is the probability of getting exactly one orange ball?

The number of ways to get exactly one orange ball is

$$
\underbrace{\binom{2}{1}}_{\text {choose } 1 \text { orange }} \times \underbrace{\binom{5}{2}}_{\text {choose } 2 \text { purple }}=2 \times 10=20,
$$

so the probability is $P(1$ orange $)=\binom{2}{1}\binom{5}{2} /\binom{7}{3}=20 / 35 \approx 57.14 \%$.
(c) What is the probability of getting at least one orange ball?

The number of ways to get zero orange balls is $\binom{2}{0}\binom{5}{3}=10$, so the probability of getting at least one orange ball is
$P(\geq 1$ orange $)=1-P(0$ orange $)=1-\frac{\binom{2}{0}\binom{5}{3}}{\binom{7}{3}}=1-\frac{10}{35}=\frac{25}{35} \approx 71.43 \%$.
Problem 5. A diagnostic test is administered to a random person to determine if they have a certain disease. Consider the events:

$$
\begin{aligned}
& T=\text { "the test is positive," } \\
& D=\text { "the person has the disease." }
\end{aligned}
$$

Suppose that the test has the following "false positive" and "false negative" probabilities:

$$
P\left(T \mid D^{\prime}\right)=0.03 \text { (i.e., } 3 \% \text {) and } \quad P\left(T^{\prime} \mid D\right)=0.02 \text { (i.e., } 2 \% \text {). }
$$

(a) Compute the probabilities $P(T \mid D)$ and $P\left(T^{\prime} \mid D^{\prime}\right)$.

Assuming that the person has the disease, we have $P\left(T^{\prime} \mid D\right)=0.04$ and hence

$$
P(T \mid D)=1-P\left(T^{\prime} \mid D\right)=1-0.02=0.98 \text {. }
$$

Assuming that the person does not have the disease, we have $P\left(T \mid D^{\prime}\right)=0.02$ and hence

$$
P\left(T^{\prime} \mid D^{\prime}\right)=1-P\left(T \mid D^{\prime}\right)=1-0.03=0.97
$$

(b) Assume that 10% of the population has this disease, i.e., $P(D)=0.1$. What is the probability that a random person will test positive?

Using the "law of total probability" gives

$$
\begin{aligned}
T & =(T \cap D) \sqcup\left(T \cap D^{\prime}\right) \\
P(T) & =P(T \cap D)+P\left(T \cap D^{\prime}\right) \\
& =P(D) P(T \mid D)+P\left(D^{\prime}\right) P\left(T \mid D^{\prime}\right) \\
& =(0.1)(0.98)+(0.9)(0.03)=12.5 \% .
\end{aligned}
$$

(c) Suppose that a random person is tested and the test returns positive. What is the probability that this person actually has the disease?

We are looking for the probability $P(D \mid T)$. Using Bayes' theorem gives

$$
\begin{aligned}
P(D \mid T) & =P(D \cap T) / P(T) \\
& =P(D) P(T \mid D) / P(T) \\
& =\frac{P(D) P(T \mid D)}{P(D) P(T \mid D)+P\left(D^{\prime}\right) P\left(T \mid D^{\prime}\right)} \\
& =\frac{(0.1)(0.98)}{(0.1)(0.98)+(0.9)(0.03)}=78.4 \% .
\end{aligned}
$$

Version B

Problem 1. Consider a coin with $P(H)=3 / 4$ and $P(T)=1 / 4$. Suppose that the coin is flipped 8 times in sequence and suppose that the coin has no memory.
(a) What is the probability of getting the sequence THTTTHTT?

Since the coin has no memory, we can multiply the probabilities:

$$
\begin{aligned}
P(\text { THTTTHTT }) & =P(T) P(H) P(T) P(T) P(T) P(H) P(T) P(T) \\
& =P(H)^{2} P(T)^{6} \\
& =\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{6}=\frac{3^{2}}{4^{8}} \approx 0.013 \% .
\end{aligned}
$$

(b) What is the probability that H shows up exactly twice?

We use the formula for binomial probability:

$$
\begin{aligned}
P(\text { we get } H \text { twice }) & =\binom{8}{2} P(H)^{2} P(T)^{6} \\
& =\frac{8!}{2!6!}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{6} \\
& =\frac{8 \cdot 7}{2} \cdot \frac{3^{2}}{4^{8}} \approx 0.38 \%
\end{aligned}
$$

(c) What is the probability that H shows up at least once?

$$
\begin{aligned}
P(\text { at least one head }) & =1-P(\text { all tails }) \\
& =1-\left(\frac{1}{4}\right)^{8} \\
& =\frac{4^{8}-1}{4^{8}} \approx 100 \%
\end{aligned}
$$

Problem 2. There are two bowls on a table. The first bowl contains 3 red chips and 3 white chips. The second bowl contains 2 red chips and 4 white chips. Your friend walks up to the table and chooses one chip at random. Consider the following events:

$$
\begin{aligned}
B_{1} & =\text { "the chip comes from the first bowl," } \\
B_{2} & =\text { "the chip comes from the second bowl," } \\
R & =\text { "the chip is red." }
\end{aligned}
$$

(a) Compute the probabilities $P\left(R \mid B_{1}\right)$ and $P\left(R \mid B_{2}\right)$.

The first bowl has 3 red chips and 3 white chips, so $P\left(R \mid B_{1}\right)=\frac{3}{3+3}=\frac{3}{6}$.
The second bowl has 2 red chips and 4 white chips, so $P\left(R \mid B_{2}\right)=\frac{2}{2+4}=\frac{2}{6}$.
(b) Suppose that the bowls are equally likely, i.e., $P\left(B_{1}\right)=P\left(B_{2}\right)=1 / 2$. In this case, what is the probability that the chip is red?

First method: If the bowls are equally likely then we just have 12 chips, 5 of which are red. So the probability of red is $P(R)=5 / 12$.

Second method: We use the "law of total probability" to get

$$
\begin{aligned}
R & =\left(R \cap B_{1}\right) \sqcup\left(R \cap B_{2}\right) \\
P(R) & =P\left(R \cap B_{1}\right)+P\left(R \cap B_{2}\right) \\
P(R) & =P\left(B_{1}\right) P\left(R \mid B_{1}\right)+P\left(B_{2}\right) P\left(R \mid B_{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{6}+\frac{1}{2} \cdot \frac{2}{6}=\frac{5}{12} \approx 41.67 \%
\end{aligned}
$$

(c) On the other hand, suppose that $P\left(B_{1}\right)=2 / 3$ and $P\left(B_{2}\right)=1 / 3$. Now what is the probability of getting a red chip?

This time we have to use the law of total probability:

$$
\begin{aligned}
R & =\left(R \cap B_{1}\right) \sqcup\left(R \cap B_{2}\right) \\
P(R) & =P\left(R \cap B_{1}\right)+P\left(R \cap B_{2}\right) \\
P(R) & =P\left(B_{1}\right) P\left(R \mid B_{1}\right)+P\left(B_{2}\right) P\left(R \mid B_{2}\right) \\
& =\frac{2}{3} \cdot \frac{3}{6}+\frac{1}{3} \cdot \frac{2}{6}=\frac{8}{18} \approx 44.44 \% .
\end{aligned}
$$

Problem 3. Suppose that a certain state labels each license plate with a sequence of 6 letters taken from the standard alphabet $\{A, B, C, \ldots, Z\}$.

Remark: $\#\{A, B, C, \ldots, Z\}=26$. Sorry if this confused anyone.
(a) How many license plates are possible if letters are not allowed to be repeated?

$$
\underbrace{26}_{1 \text { st }} \times \underbrace{25}_{2 \text { nd }} \times \underbrace{24}_{3 \text { rd }} \times \underbrace{23}_{4 \text { th }} \times \underbrace{22}_{5 \text { th }} \times \underbrace{21}_{6 \text { th }}=\frac{26!}{20!}
$$

(b) How many ways are there to arrange the letters B, A, N, A, N, A ?

There are 6 ! ways to arrange the labeled letters $B, A_{1}, N_{1}, A_{2}, N_{2}, A_{3}$. Then we have to divide by $1!2!3$! to remove the labels:

$$
\binom{6}{1,2,3}=\frac{6!}{1!2!3!}=60 .
$$

(c) Suppose that license plates are allowed to contain repeated letters, and that all license plates are equally likely. In this case, what is the probability that a random license plate contains the letters B, A, N, A, N, A, in some order?

If letters can be repeated then the total number of license plates is 26^{6}. Since these are equally likely the probably of getting B, A, N, A, N, A in some order is

$$
\frac{\#(\text { ways to get } B, A, N, A, N, A)}{26^{6}}=\frac{\binom{6}{1,2,3}}{26^{6}}=\frac{60}{26^{6}} \approx 0 \% .
$$

Problem 4. An urn contains 2 orange balls and 4 purple balls. You reach into the urn and pull out a collection of 3 balls (unordered, and without replacement). Assume that all possible outcomes are equally likely.
(a) What is the size of the sample space?

The sample space S is the set of all possible collections of 3 balls. Since there are $2+4=6$ balls to choose from we have

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 .
$$

(b) What is the probability of getting exactly one orange ball?

The number of ways to get exactly one orange ball is

$$
\underbrace{\binom{2}{1}}_{\text {choose } 1 \text { orange }} \times \underbrace{\binom{4}{2}}_{\text {choose } 2 \text { purple }}=2 \times 6=12,
$$

so the probability is $P(1$ orange $)=\binom{2}{1}\binom{4}{2} /\binom{6}{3}=12 / 20=60 \%$.
(c) What is the probability of getting at least one orange ball?

The number of ways to get zero orange balls is $\binom{2}{0}\binom{4}{3}=4$, so the probability of getting at least one orange ball is

$$
P(\geq 1 \text { orange })=1-P(0 \text { orange })=1-\frac{\binom{2}{0}\binom{4}{3}}{\binom{6}{3}}=1-\frac{4}{20}=\frac{16}{20}=80 \% .
$$

Problem 5. A diagnostic test is administered to a random person to determine if they have a certain disease. Consider the following events:

$$
\begin{aligned}
& T=\text { "the test returns positive," } \\
& D=\text { "the person has the disease." }
\end{aligned}
$$

Suppose that the test has the following "false positive" and "false negative" probabilities:

$$
P\left(T \mid D^{\prime}\right)=0.02 \text { (i.e., } 2 \% \text {) and } \quad P\left(T^{\prime} \mid D\right)=0.04 \text { (i.e., } 4 \% \text {). }
$$

(a) Compute the probabilities $P(T \mid D)$ and $P\left(T^{\prime} \mid D^{\prime}\right)$.

Assuming that the person has the disease, we have $P\left(T^{\prime} \mid D\right)=0.04$ and hence

$$
P(T \mid D)=1-P\left(T^{\prime} \mid D\right)=1-0.04=0.96 .
$$

Assuming that the person does not have the disease, we have $P\left(T \mid D^{\prime}\right)=0.02$ and hence

$$
P\left(T^{\prime} \mid D^{\prime}\right)=1-P\left(T \mid D^{\prime}\right)=1-0.02=0.98
$$

(b) Assume that 10% of the population has this disease, i.e., $P(D)=0.1$. What is the probability that a random person will test positive?

Using the "law of total probability" gives

$$
\begin{aligned}
T & =(T \cap D) \sqcup\left(T \cap D^{\prime}\right) \\
P(T) & =P(T \cap D)+P\left(T \cap D^{\prime}\right) \\
& =P(D) P(T \mid D)+P\left(D^{\prime}\right) P\left(T \mid D^{\prime}\right) \\
& =(0.1)(0.96)+(0.9)(0.02)=11.4 \% .
\end{aligned}
$$

(c) Suppose that a random person is tested and the test returns positive. What is the probability that this person actually has the disease?

We are looking for the probability $P(D \mid T)$. Using Bayes' theorem gives

$$
\begin{aligned}
P(D \mid T) & =P(D \cap T) / P(T) \\
& =P(D) P(T \mid D) / P(T) \\
& =\frac{P(D) P(T \mid D)}{P(D) P(T \mid D)+P\left(D^{\prime}\right) P\left(T \mid D^{\prime}\right)} \\
& =\frac{(0.1)(0.96)}{(0.1)(0.96)+(0.9)(0.02)} \approx 84.21 \% .
\end{aligned}
$$

