Problem 1. Chain Rule. Let $f(x, y)=x e^{y}$ with $x(u, v)=u v$ and $y(u, v)=u^{2} v$. Use the multivariable chain rule to compute $d f / d u$.

The chain rule says that

$$
\frac{d f}{d u}=\frac{d f}{d x} \cdot \frac{d x}{d u}+\frac{d f}{d y} \cdot \frac{d y}{d u}, \quad \text { or } \quad f_{u}=f_{x} \cdot x_{u}+f_{y} \cdot y_{u}
$$

In order to compute this we compute the partial derivatives:

$$
\begin{aligned}
f_{x} & =e^{y}, \\
f_{y} & =x e^{y}, \\
x_{u} & =v, \\
y_{u} & =2 u v .
\end{aligned}
$$

Then we put them together:

$$
f_{x}=v e^{y}+2 u v x e^{y} .
$$

If we want, we can express the answer in terms of u and v ? 1

$$
f_{x}=v e^{u^{2} v}+2 u v(u v) e^{u^{2} v} .
$$

Problem 2. Tangent Plane. Let $f(x, y, z)=x^{2} y-z$. Find the equation of the tangent plane to the surface $f(x, y, z)=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)=(2,1,3)$.

The equation of the tangent plane to the surface $f(x, y, z)=$ constant at a point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\begin{aligned}
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \bullet\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle & =0 \\
\left\langle f_{x}\left(x_{0}, y_{0}, z_{0}\right), f_{x}\left(x_{0}, y_{0}, z_{0}\right), f_{x}\left(x_{0}, y_{0}, z_{0}\right)\right\rangle \bullet\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle & =0 \\
f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right) & =0 .
\end{aligned}
$$

In our case we have

$$
\begin{aligned}
f_{x} & =2 x y, \\
f_{y} & =x^{2}, \\
f_{z} & =-1,
\end{aligned}
$$

and $\left(x_{0}, y_{0}, z_{0}\right)=(2,1,3)$, so the tangent plane is

$$
\begin{aligned}
f_{x}(2,1,3)(x-2)+f_{y}(2,1,3)(y-2)+f_{z}(2,1,3)(z-3) & =0 \\
2(2)(1)(x-2)+(2)^{2}(y-1)-1(z-3) & =0 \\
4(x-2)+4(y-1)-1(z-3) & =0 \\
4(x-2)+4(y-1)-1(z-3) & =0 \\
4 x+4 y-z & =9 .
\end{aligned}
$$

Here is a picture:

[^0]

Problem 3. Optimization. The scalar field $f(x, y)=x^{3}-y^{3}+x y$ has two critical points: $(0,0)$ and $(1 / 3,-1 / 3)$. Use the second derivative test to determine whether each of these is a local maximum or minimum, saddle point, or degenerate.

We need to compute the determinant of the Hessian matrix. We begin by computing the second partial derivatives $\overbrace{2}^{2}$

$$
\begin{aligned}
f_{x} & =3 x^{2}+y, \\
f_{y} & =-3 y^{2}+x, \\
f_{x x} & =6 x, \\
f_{y y} & =-6 y, \\
f_{x y} & =1, \\
f_{y x} & =1 .
\end{aligned}
$$

Thus the Hessian determinant is

$$
\operatorname{det}(H f)=\operatorname{det}\left(\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
6 x & 1 \\
1 & -6 y
\end{array}\right)=-36 x y-1 .
$$

Since $\operatorname{det}(H f)(0,0)=-1<0$ we see that $(0,0)$ is a saddle point. Since $\operatorname{det}(H f)(1 / 3,-1 / 3)=$ $-36(-1 / 9)-1=3>0$ we see that $(1 / 3,-1 / 3)$ is a local maximum or minimum. Since $f_{x x}(1 / 3,-1 / 3)=6(1 / 3)=2>0$ we see that $(1 / 3,-1 / 3)$ is a local minimum ${ }^{3}$

[^1]Here is a picture:

[^0]: ${ }^{1}$ And, I guess, we could simplify it.

[^1]: ${ }^{2}$ One can check that $\left\langle f_{x}(0,0), f_{y}(0,0)\right\rangle=\langle 0,0\rangle$ and $\left\langle f_{x}(1 / 3,-1 / 3), f_{y}(1 / 3,-1 / 3)\right\rangle=\langle 0,0\rangle$, as claimed.
 ${ }^{3}$ We could also check that $f_{y y}(1 / 3,-1 / 3)=-6(-1 / 3)=2>0$.

