Problem 1. Lines in \mathbb{R}^{3}.

(a) Find a parametrization for the line passing through $P=(-1,0,1)$ and $Q=(1,2,1)$.
(b) Find a parametrization for the line of intersection of the following two planes:

$$
\left(\begin{array} { l }
{ (1) }
\end{array} \left\{\begin{array}{l}
x+2 y+2 z=1 \\
x+3 y+5 z=3
\end{array}\right.\right.
$$

(a): We need one point on the line and one vector in the line. We will choose the point $P=(-1,0,1)$ and the vector $\overrightarrow{P Q}=\langle 1-(-1), 2-0,1-1\rangle=\langle 2,2,0\rangle$. Then every point of the line has the form $\mathbf{r}(t)$ where

$$
\mathbf{r}(t)=\langle-1,0,1\rangle+r\langle 2,2,0\rangle=\langle-1+2 t, 2 t, 1\rangle .
$$

Here is a picture:

(b): First we subtract (1) from (2) to obtain an equation with no x :

$$
(3)=(2)-(1): 0+y+3 z=2 .
$$

Then we subtract 2(3) from (1) to obtain an equation with no y :

$$
(4)=(1)-2(3): x+0-4 z=-3 .
$$

Finally, we let $t=z$ be a parameter and solve for (x, y, z) in terms of t :

$$
\left\{\begin{array}{l}
x=-3+4 t \\
y=2-3 t \\
z=t
\end{array}\right.
$$

We can also express this as

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=\langle-3+4 t, 2-3 t, t\rangle=\langle-3,2,0\rangle+t\langle 4,-3,1\rangle .
$$

Here is a picture:

Problem 2. Integration of Vector-Valued Functions. Consider a parametrized curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ with the following properties:

$$
\begin{aligned}
\mathbf{r}(0) & =\langle 2,1\rangle \\
\mathbf{r}^{\prime}(0) & =\langle 0,1\rangle \\
\mathbf{r}^{\prime \prime}(t) & =\langle-\cos t,-\sin t\rangle
\end{aligned}
$$

(a) Integrate $\mathbf{r}^{\prime \prime}(t)$ to obtain $\mathbf{r}^{\prime}(t)$.
(b) Integrate $\mathbf{r}^{\prime}(t)$ to obtain $\mathbf{r}(t)$.
(a): We have

$$
\begin{aligned}
\mathbf{r}^{\prime}(t)=\int \mathbf{r}^{\prime \prime}(t) d t & =\left\langle\int(-\cos t) d t, \int(-\sin t) d t\right\rangle \\
& =\left\langle-\sin t+c_{1}, \cos t+c_{2}\right\rangle
\end{aligned}
$$

for some constants c_{1}, c_{2}. To find these constants, we evaluate at 0 :

$$
\langle 0,1\rangle=\mathbf{r}^{\prime}(0)=\left\langle-\sin 0+c_{1}, \cos 0+c_{2}\right\rangle=\left\langle c_{1}, 1+c_{2}\right\rangle
$$

We find that $c_{1}=0$ and $c_{2}=0$, so that

$$
\mathbf{r}^{\prime}(t)=\langle-\sin t, \cos t\rangle
$$

(b): Then we integrate again to get

$$
\begin{aligned}
\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t) d t & =\left\langle\int(-\sin t) d t, \int(\cos t) d t\right\rangle \\
& =\left\langle\cos t+c_{3}, \sin t+c_{4}\right\rangle .
\end{aligned}
$$

To find the constants c_{3}, c_{4} we evaluate at $t=0$:

$$
\left.\langle 2,1\rangle=\mathbf{r}(0)=\left\langle\cos 0+c_{3}, \sin 0+c_{4}\right\rangle=1+c_{3}, 0+c_{4}\right\rangle .
$$

This implies that $c_{3}=1$ and $c_{4}=1$, hence

$$
\mathbf{r}(t)=\langle 1+\cos t, 1+\sin t\rangle .
$$

Remark: I created this problem by starting with a parametrized circle with center at $\langle 1,1\rangle$ and radius 1. Here is a picture:

