Problem 1. Parametrized Paths. Consider the following parametrized path in \mathbb{R}^{2} :

$$
f(t)=(x(t), y(t))=\left(1+3 t^{2}, 4 t^{2}\right) .
$$

(a) Compute the velocity vector $f^{\prime}(t)$ and the speed $\left\|f^{\prime}(t)\right\|$.
(b) Compute the arc length between $t=0$ and $t=1$.
(a): The velocity is $f^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)=(4 t, 8 t)$ and the speed is

$$
\begin{aligned}
\left\|f^{\prime}(t)\right\| & =\sqrt{(4 t)^{2}+(8 t)^{2}} \\
& =\sqrt{16 t^{2}+64 t^{2}} \\
& =\sqrt{100 t^{2}} \\
& =10 t .
\end{aligned}
$$

(b): The distance traveled between times $t=0$ and $t=1$ is

$$
\begin{aligned}
\int_{0}^{1} \text { speed } d t & =\int_{0}^{1} 10 t d t \\
& =10\left[t^{2} / 2\right]_{0}^{1} \\
& =10[1 / 2-0 / 2] \\
& =5 .
\end{aligned}
$$

Remark: Actually this curve is a straight line with a non-standard parametrization. Instead of having constant speed, it gets faster as time increases. Knowing this, we could simply use the Pythagorean theorem to compute the arc length. Here is a picture:

Problem 2. Vector Arithmetic. Consider the triangle in \mathbb{R}^{3} with vertices

$$
P=(1,1,1), \quad Q=(2,-1,1), \quad R=(1,2,3) .
$$

(a) Compute the cosines of the angles of the triangle. [No need to find the actual angles.]
(b) Find the equation of the plane in \mathbb{R}^{3} that contains this triangle.
(a): Consider the triangle with side vectors

$$
\begin{aligned}
& \mathbf{u}=\overrightarrow{P Q}=\langle 1,-2,0\rangle, \\
& \mathbf{v}=\overrightarrow{Q R}=\langle-1,3,2\rangle, \\
& \mathbf{w}=\overrightarrow{P R}=\langle 0,1,2\rangle,
\end{aligned}
$$

and let α, β, γ be the angles as the points P, Q, R, respectively. Here is a picture ${ }^{\top}$

In order to compute the angles we first compute the dot products:

$$
\mathbf{u} \bullet \mathbf{u}=5, \quad \mathbf{u} \bullet \mathbf{v}=-7, \quad \mathbf{u} \bullet \mathbf{w}=-2, \quad \mathbf{v} \bullet \mathbf{v}=14, \quad \mathbf{v} \bullet \mathbf{w}=7, \quad \mathbf{w} \bullet \mathbf{w}=5
$$

Then we have

$$
\begin{aligned}
& \cos \alpha=\frac{\mathbf{u} \bullet \mathbf{w}}{\sqrt{\mathbf{u} \bullet \mathbf{u}} \cdot \sqrt{\mathbf{w} \bullet \mathbf{w}}}=\frac{-2}{\sqrt{5} \cdot \sqrt{5}} \\
& \cos \beta=\frac{-\mathbf{u} \cdot \mathbf{v}}{\sqrt{\mathbf{u} \bullet \mathbf{u}} \cdot \sqrt{\mathbf{v} \bullet \mathbf{v}}}=\frac{7}{\sqrt{5} \cdot \sqrt{14}} \\
& \cos \gamma=\frac{\mathbf{v} \bullet \mathbf{w}}{\sqrt{\mathbf{v} \bullet \mathbf{v}} \cdot \sqrt{\mathbf{w} \bullet \mathbf{w}}}=\frac{7}{\sqrt{14} \cdot \sqrt{5}}
\end{aligned}
$$

According to my computer this gives $\alpha=113.6^{\circ}, \beta=33.2^{\circ}$ and $\gamma=33.2^{\circ}$. Since these add to 180° it seems that I did not make a mistake.

[^0](b): The equation of a plane is determined by one point $\left(x_{0}, y_{0}, z_{0}\right)$ in the plane and a normal vector $\langle a, b, c\rangle$. To obtain a normal vector we can take the cross product of any two vectors in the plane. For example, let's take $\mathbf{u}=\langle 1,-2,0\rangle$ and $\mathbf{w}=\langle 0,1,2\rangle$. Their cross product is
\[

$$
\begin{aligned}
\mathbf{u} \times \mathbf{w} & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -2 & 0 \\
0 & 1 & 2
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
-2 & 0 \\
1 & 2
\end{array}\right) \mathbf{i}-\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right) \mathbf{j}+\operatorname{det}\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right) \mathbf{k} \\
& =-4 \mathbf{i}-2 \mathbf{j}+1 \mathbf{k} \\
& =\langle-4,-2,1\rangle
\end{aligned}
$$
\]

Choosing the normal vector $\langle a, b, c\rangle=\mathbf{u} \times \mathbf{w}=\langle-4,-2,1\rangle$ and the point $\left(x_{0}, y_{0}, z_{0}\right)=P=$ $(1,1,1)$ gives the equation of the plane:

$$
\begin{aligned}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right) & =0 \\
-4(x-1)-2(y-1)+1(z-1) & =0 \\
-4 x+4-2 y+2+z-1 & =0 \\
-4 x-2 y+z & =-5 \\
4 x+2 y-z & =5 .
\end{aligned}
$$

Let's verify that each of the points P, Q, R is on this plane:

$$
\begin{array}{r}
4(1)+2(1)-1(1)=5 \\
4(2)+2(-1)-1(1)=5 \\
4(1)+2(2)-1(3)=5
\end{array}
$$

Yup.

[^0]: ${ }^{1}$ I drew this picture after I computed the angles, so it looks reasonably correct. Actually, any picture of the triangle is correct from some point of view. My picture is correct if we look at the triangle from directly above its plane.

