Problem 1. Surface Area. Fix an angle $0 \leq \alpha<\pi$ and let D be the region on the surface of a sphere of radius 1 with angle $\leq \alpha$ from the vertical \cdot T]

(a) Find a parametrization for D of the form $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$.
(b) Use your parametrization to compute the surface area of D.
(a): We will use spherical coordinates (ρ, θ, φ) with a fixed radius $\rho=1$. Recall that spherical coordinates are connected to polar and Cartesian coordinates via two right triangles \square^{2}

From the picture we obtain

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right\} \quad \text { and } \quad\left\{\begin{array}{l}
z=\rho \cos \varphi \\
r=\rho \sin \varphi
\end{array}\right\}, \quad \text { hence } \quad\left\{\begin{array}{l}
x=\rho \sin \varphi \cos \theta \\
y=\rho \sin \varphi \sin \theta \\
z=\rho \cos \varphi
\end{array}\right\}
$$

After fixing $\rho=1$ this becomes

$$
\begin{aligned}
\mathbf{r}(\theta, \varphi) & =\langle x(\theta, \varphi), y(\theta, \varphi), z(\theta, \varphi)\rangle \\
& =\langle\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi\rangle
\end{aligned}
$$

This parametrization covers the whole surface of the unit sphere as $0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq \pi$. In this problem we are only interested in the region where $0 \leq \varphi \leq \alpha$, for the fixed angle α.

[^0](b): To compute the surface area, we first need the stretch factor $\left\|\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}\right\|$. We have
\[

$$
\begin{aligned}
\mathbf{r}_{\theta} & =\langle-\sin \varphi \sin \theta, \sin \varphi \cos \theta, 0\rangle \\
\mathbf{r}_{\varphi} & =\langle\cos \varphi \cos \theta, \cos \varphi \sin \theta,-\sin \varphi\rangle \\
\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi} & =\left\langle-\sin ^{2} \varphi \cos \theta, \sin ^{2} \varphi \sin \theta,-\sin \varphi \cos \varphi \sin ^{2} \theta-\sin \varphi \cos \varphi \cos ^{2} \theta\right\rangle \\
& =\left\langle-\sin ^{2} \varphi \cos \theta, \sin ^{2} \varphi \sin \theta,-\sin \varphi \cos \varphi\right\rangle
\end{aligned}
$$
\]

and hence

$$
\begin{aligned}
\left\|\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}\right\|^{2} & =\sin ^{4} \varphi \cos ^{2} \theta+\sin ^{4} \varphi \sin ^{2} \theta+\sin ^{2} \varphi \cos ^{2} \varphi \\
& =\sin ^{4} \varphi+\sin ^{2} \varphi \cos ^{2} \varphi \\
& =\sin ^{2} \varphi\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right) \\
& =\sin ^{2} \varphi \\
\left\|\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}\right\| & =\sin \varphi
\end{aligned}
$$

We don't need to write $|\sin \varphi|$ because in spherical coordinates we always have $0 \leq \varphi \leq \pi$. Finally, we compute the area:

$$
\begin{aligned}
\iiint_{D} 1 d A & =\iint_{D}\left\|\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}\right\| d \theta d \varphi \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{\alpha} \sin \varphi d \varphi \\
& =2 \pi(-\cos (\alpha)+\cos (0)) \\
& =2 \pi(1-\cos \alpha) .
\end{aligned}
$$

Check: When $\alpha=0$ we have area 0 , as exected. When $\alpha=\pi / 2$ we have area 2π which is the correct area of the hemisphere. When $\alpha=\pi$ we have 4π which is the correct surface area of the full unit sphere.

Problem 2. Surface Area. Let D be the surface of the cone $z^{2}=x^{2}+y^{2}$ for values z between 0 and 1:

(a) Find a parametrization for D of the form $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$.
(b) Use your parametrization to compute the surface area of D.
(a): We will use polar coordinates $x=u \cos v$ and $y=u \sin v v^{3}$ Then the equation of the cone becomes $z^{2}=x^{2}+y^{2}=u^{2}$, or $z=u$ (since z and u are both positive). As z goes from 0 to

[^1]1, so does u. Hence the surface of the cone has the following parametrization:

$$
\mathbf{r}(u, v)=\langle u \cos v, u \sin v, u\rangle \quad \text { where } 0 \leq u \leq 1 \text { and } 0 \leq v \leq 2 \pi .
$$

Here is a picture:

(b): First we compute the stretch factor:

$$
\begin{aligned}
\mathbf{r}_{u} & =\langle\cos v, \sin v, 1\rangle \\
\mathbf{r}_{v} & =\langle-u \sin v, u \cos v, 0\rangle \\
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\left\langle-u \cos v,-u \sin v,-u \sin ^{2} v-u \cos ^{2} v\right\rangle \\
& =\langle-u \cos v,-u \sin v,-u\rangle \\
\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|^{2} & =u^{2} \cos ^{2} v+u^{2} \sin ^{2} v+u^{2} \\
& =u^{2}+u^{2} \\
& =2 u^{2} \\
\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| & =\sqrt{2} \cdot u
\end{aligned}
$$

Then we compute the area:

$$
\begin{aligned}
\iiint_{D} 1 d A & =\iiint_{D} \sqrt{2} \cdot u d u d v \\
& =\sqrt{2} \cdot \int_{0}^{2 \pi} d v \cdot \int_{0}^{1} u d u \\
& =\sqrt{2} \cdot 2 \pi \cdot(1 / 2) \\
& =\sqrt{2} \cdot \pi .
\end{aligned}
$$

Remark: More generally, the surface area of a cone with height h and base a circle of radius a is $\pi a \sqrt{h^{2}+a^{2}}$. In our case we have $a=h=1$.

Problem 3. Gravitational Potential Near the Surface of a Planet. Choose a coordinate system near the surface of a planet, so that $z=0$ is the ground and the z-axis points "up". A particle of mass m at a point (x, y, z) with $z \geq 0$ feels a constant gravitational force of $\mathbf{F}(x, y, z)=\langle 0,0,-m g\rangle$.
(a) Suppose that the particle has initial position and initial velocity as follows:

$$
\begin{aligned}
\mathbf{r}(0) & =\langle 0,0,0\rangle \\
\mathbf{r}^{\prime}(0) & =\langle u, v, w\rangle
\end{aligned}
$$

Integrate Newton's equation $\mathbf{F}=m \mathbf{r}^{\prime \prime}(t)$ to find $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}(t)$.
(b) Find a formula for the kinetic energy at time t :

$$
\mathrm{KE}(t)=\frac{1}{2} m\left\|\mathbf{r}^{\prime}(t)\right\|^{2} .
$$

(c) Find a scalar field $f(x, y, z)$ such that $\mathbf{F}=-\nabla f$ and $f(0,0,0)=0$. This f is called the gravitational potential of the particle ${ }^{4}$
(d) Find a formula for the potential energy at time t :

$$
\operatorname{PE}(t)=f(\mathbf{r}(t)) .
$$

(e) Check that the total mechanical energy $\operatorname{KE}(t)+\operatorname{PE}(t)$ is constant.
(a): Since $\mathbf{F}=\langle 0,0,-m g\rangle$, Newton's 2nd Law tells us that

$$
\begin{aligned}
m \mathbf{r}^{\prime \prime}(t) & =\mathbf{F} \\
m \mathbf{r}^{\prime \prime}(t) & =\langle 0,0,-m g\rangle \\
\mathbf{r}^{\prime \prime}(t) & =\langle 0,0,-g\rangle .
\end{aligned}
$$

In other words, the particle has constant acceleration. We integrate this once to get

$$
\mathbf{r}^{\prime}(t)=\left\langle c_{1}, c_{2},-g t+c_{3}\right\rangle
$$

for some constants c_{1}, c_{2}, c_{3}. The initial condition $\mathbf{r}^{\prime}(0)=\langle u, v, w\rangle$ tells us that $\left\langle c_{1}, c_{2}, c_{3}\right\rangle=$ $\langle u, v, w\rangle$, so the velocity at time t is

$$
\mathbf{r}^{\prime}(t)=\langle u, v,-g t+w\rangle .
$$

We integrate again to obtain

$$
\mathbf{r}(t)=\left\langle u t+c_{3}, v t+c_{4},-\frac{1}{2} g t^{2}+w t+c_{6}\right\rangle
$$

for some constants c_{4}, c_{5}, c_{6}. Then the initial condition $\mathbf{r}(0)=\langle 0,0,0\rangle$ tells us that $\left\langle c_{4}, c_{5}, c_{6}\right\rangle=$ $\langle 0,0,0\rangle$, so the position at time t is

$$
\mathbf{r}(t)=\left\langle u t, v t,-\frac{1}{2} g t^{2}+w t\right\rangle .
$$

(b): The kinetic energy at time t is

$$
\begin{aligned}
\mathrm{KE}(t) & =\frac{1}{2} m\left\|\mathbf{r}^{\prime}(t)\right\|^{2} \\
& =\frac{1}{2} m\|\langle u, v,-g t+w\rangle\|^{2} \\
& =\frac{1}{2} m\left(u^{2}+v^{2}+(-g t+w)^{2}\right) \\
& =\frac{1}{2} m\left(u^{2}+v^{2}+g^{2} t^{2}-2 g t w+w^{2}\right) \\
& =\frac{1}{2} m\left(u^{2}+v^{2}+w^{2}\right)+\frac{1}{2} m g^{2} t^{2}-m g t w .
\end{aligned}
$$

[^2](c): A constant vector field is necessarily conservative. For example, consider $\mathbf{F}=\langle a, b, c\rangle$ for some constants a, b, c. Then we observe that $\mathbf{F}=\nabla f$ where $f(x, y, z)=a x+b y+c z$. Indeed, it is easy to check that $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle a, b, c\rangle$. We could find this f by brute force, or we could use the Fundamental Theorem of Line Integrals. For a given point (x, y, z) we will integrate \mathbf{F} along the path $\mathbf{r}(t)=\langle x t, y t, z t\rangle$ for t from 0 to 1 . If $\mathbf{F}=\nabla f$ then we must have
\[

$$
\begin{aligned}
f(x, y, z)-f(0,0,0) & =\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{1} \mathbf{F}(x t, y t, z t) \bullet\langle x, y, z\rangle d t \\
& =\int_{0}^{1}\langle a, b, c\rangle \bullet\langle x, y, z\rangle d t \\
& =\int_{0}^{1}(a x+b y+c z) t d t \\
& =a x+b y+c z
\end{aligned}
$$
\]

In the case when $\mathbf{F}=\langle a, b, c\rangle=\langle 0,0,-m g\rangle$ we have $\mathbf{F}=\nabla f$ where $f(x, y, z)=0 x+0 y-m g z=$ $-m g z$. But for physical reasons we write $\mathbf{F}=-\nabla f$ with $f(x, y, z)=-m g z$.
(d): The potential energy at time t is

$$
\begin{aligned}
\mathrm{PE}(t) & =f(\mathbf{r}(t)) \\
& =f\left(u t, v t,-\frac{1}{2} g t^{2}+w t\right) \\
& =m g\left(-\frac{1}{2} g t^{2}+w t\right) \\
& =-\frac{1}{2} m g^{2} t^{2}+m g w t .
\end{aligned}
$$

(e): From parts (b) and (d) we see that

$$
\mathrm{KE}(t)+\mathrm{PE}(t)=\frac{1}{2} m\left(u^{2}+v^{2}+w^{2}\right),
$$

which is independent of t.

Problem 4. Conservative Vector Fields. Consider the following vector fields:

$$
\begin{aligned}
\mathbf{F}(x, y, z) & =\langle y+z, x+z, x+y\rangle \\
\mathbf{G}(x, y, z) & =\langle-y+z, x+z, x+y\rangle .
\end{aligned}
$$

(a) Compute $\nabla \times \mathbf{F}$ and $\nabla \times \mathbf{G}$. Observe that \mathbf{F} is conservative, while \mathbf{G} is not.
(b) Now think of \mathbf{F} and \mathbf{G} as force fields. Compute the work done by \mathbf{F} and \mathbf{G} on a particle of mass 1 traveling around the circle $\mathbf{r}(t)=\langle\cos t, \sin t, 0\rangle$ for $0 \leq t \leq 2 \pi$.
(c) Find a scalar field $f(x, y, z)$ such that $\mathbf{F}=\nabla f$.
(a): We have

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left\langle(x+y)_{y}-(x+z)_{z},(y+z)_{z}-(x+y)_{x},(x+z)_{x}-(y+z)_{y}\right\rangle \\
& =\langle 1-1,1-1,1-1\rangle \\
& =\langle 0,0,0\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla \times \mathbf{G} & =\left\langle(x+y)_{y}-(x+z)_{z},(-y+z)_{z}-(x+y)_{x},(x+z)_{x}-(-y+z)_{y}\right\rangle \\
& =\langle 1-1,1-1,1-(-1)\rangle \\
& =\langle 0,0,2\rangle .
\end{aligned}
$$

This tells us that \mathbf{F} is conservative, while \mathbf{G} is not.
(b): The work done by a force field \mathbf{F} acting on moving particle $\mathbf{r}(t)$ is defined as

$$
\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t
$$

In the case of $\mathbf{F}(x, y, z)=\langle y+z, x+z, x+y\rangle$ and $\mathbf{r}(t)=\langle\cos t, \sin t, 0\rangle$ we have

$$
\begin{aligned}
\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t & =\int \mathbf{F}(\cos t, \sin t, 0) \bullet\langle-\sin t, \cos t, 0\rangle d t \\
& =\int\langle\sin t+0, \cos t+0, \cos t+\sin t\rangle \bullet\langle-\sin t, \cos t, 0\rangle d t \\
& =\int\left(-\sin ^{2} t+\cos ^{2} t+0\right) d t \\
& =\int \cos (2 t) d t \\
& =\left[\frac{1}{2} \sin (2 t)\right]_{0}^{2 \pi} \\
& =\frac{1}{2} \sin (4 \pi)-\frac{1}{2} \sin (0) \\
& =0-0 \\
& =0 .
\end{aligned}
$$

This was expected because the integral of a conservative vector around any loop is zero. In the case of $\mathbf{G}=\langle-y+z, x+z, x+y\rangle$ we have

$$
\begin{aligned}
\int \mathbf{G}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t & =\int \mathbf{F}(\cos t, \sin t, 0) \bullet\langle-\sin t, \cos t, 0\rangle d t \\
& =\int\langle-\sin t+0, \cos t+0, \cos t+\sin t\rangle \bullet\langle-\sin t, \cos t, 0\rangle d t \\
& =\int\left(\sin ^{2} t+\cos ^{2} t+0\right) d t \\
& =\int_{0}^{2 \pi} 1 d t \\
& =2 \pi .
\end{aligned}
$$

The fact that this integral is not zero again verifies that the vector field \mathbf{G} is not conservative.
(c): We are looking for a scalar field $f(x, y, z)$ satisfying

$$
\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle y+z, x+z, x+y\rangle .
$$

We will do this in two ways.
Brute Force. Since $f_{x}(x, y, z)=y+z$ we must have

$$
f(x, y, z)=x y+x z+g(y, z) \text { for some function } g(y, z) .
$$

Then since $f(x, y, z)=x y+x z+g(y, z)$ and $f_{y}(x, y, z)=x+z$ we must have

$$
\begin{aligned}
x+g_{y}(y, z) & =x+z \\
g_{y}(y, z) & =z \\
g(y, z) & =y z+h(z) \text { for some function } h(z)
\end{aligned}
$$

Finally, since $f(x, y, z)=x y+x z+y z+h(z)$ and $f_{z}(x, y, z)=x+y$ we must have

$$
\begin{aligned}
x+y+h_{z}(z) & =x+y \\
h_{z}(z) & =0 \\
h(z) & =\text { constant. }
\end{aligned}
$$

We conclude that $f(x, y, z)=x y+x z+y z$, plus some arbitrary constant.
Use the Fundamental Theorem of Line Integrals. If $\mathbf{F}(x, y, z)=\nabla f(x, y, z)$ then for any path C we have

$$
\int_{C} \mathbf{F}=f(\text { end point of } C)-f(\text { start point of } C)
$$

In particular, if we choose the path $\mathbf{r}(t)=\langle x t, y t, z t\rangle$ for $0 \leq t \leq 1$ then we obtain

$$
\begin{aligned}
f(x, y, z)-f(0,0,0) & =\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int \mathbf{F}(x t, y t, z t) \bullet\langle x, y, z\rangle d t \\
& =\int\langle y t+z t, x t+z t, x t+y t\rangle \bullet\langle x, y, z\rangle d t \\
& =\int((y t+z t) x+(x t+z t) y+(x t+y t) z) d t \\
& =2(x y+x z+y z) \cdot \int_{0}^{1} t d t \\
& =x y+x z+y z
\end{aligned}
$$

Hence $f(x, y, z)=x y+x z+y z+f(0,0,0)$, where $f(0,0,0)$ is just some arbitrary constant. I like this method better because it doesn't require any cleverness.

Finally, let's check that we got the right answer:

$$
\begin{aligned}
\nabla(x y+x z+y z) & =\left\langle(x y+x z+y z)_{x},(x y+x z+y z)_{y},(x y+x z+y z)_{z}\right\rangle \\
& =\langle y+z+0, x+0+z, 0+x+y\rangle \\
& =\mathbf{F}(x, y, z)
\end{aligned}
$$

This again confirms that \mathbf{F} is a conservative vector field.5

Problem 5. Div, Grad, Curl. Consider a scalar field $f(x, y, z)$ and a vector field $\mathbf{F}(x, y, z)=$ $\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$. Then we define vector fields called the "gradient of f " and the "curl of \mathbf{F} ":

$$
\operatorname{grad}(f)=\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

[^3]$$
\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle
$$

We also define a scalar field called the "divergence of \mathbf{F} ":

$$
\operatorname{div}(\mathbf{F})=\nabla \bullet \mathbf{F}=P_{x}+Q_{y}+R_{z} .
$$

(a) Check that $\operatorname{curl}(\operatorname{grad}(f))=\nabla \times(\nabla f)=\langle 0,0,0\rangle$.
(b) Check that $\operatorname{div}(\operatorname{curl}(\mathbf{F}))=\nabla \bullet(\nabla \times \mathbf{F})=0$.
(a): Write $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle P, Q, R\rangle$. Then we have

$$
\begin{aligned}
\nabla \times(\nabla f) & =\nabla \times\langle P, Q, R\rangle \\
& =\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle \\
& =\left\langle f_{z y}-f_{y z}, f_{x z}-f_{z x}, f_{y x}-f_{x y}\right\rangle \\
& =\langle 0,0,0\rangle .
\end{aligned}
$$

Here we used the fact that mixed partials commute for any reasonable function. ${ }^{6}$
(b): Write $\nabla \times \mathbf{F}=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle=\langle S, T, U\rangle$. Then we have

$$
\begin{aligned}
\nabla \bullet(\nabla \times \mathbf{F}) & =S_{x}+T_{y}+U_{z} \\
& =\left(R_{y}-Q_{z}\right)_{x}+\left(P_{z}-R_{x}\right)_{y}+\left(Q_{x}-P_{y}\right)_{z} \\
& =R_{y x}-Q_{z x}+P_{z y}-R_{x y}+Q_{x z}-P_{y z} \\
& =\left(P_{z y}-P_{y z}\right)+\left(Q_{x z}-Q_{z x}\right)+\left(R_{y x}-R_{x y}\right) \\
& =0 .
\end{aligned}
$$

Here again we used the fact that mixed partials commute.

[^4]
[^0]: ${ }^{1}$ On the Earth, this is the region above latitute $(90-\alpha)$ degrees North.
 ${ }^{2}$ Different books use different naming conventions. Instead of memorizing the formulas, just memorize the picture. Then you can derive the formulas for yourself.

[^1]: ${ }^{3}$ I don't write $x=r \cos \theta$ and $y=r \sin \theta$ because we are already using the letter \mathbf{r}.

[^2]: ${ }^{4}$ Actually, the choice $f(0,0,0)=0$ is arbitrary. We are just saying that a particle on the ground has zero gravitational potential. Only changes in potential energy are physically meaningful.

[^3]: ${ }^{5}$ We could try to use these methods to find a scalar function $g(x, y, z)$ such that $\mathbf{G}(x, y, z)=\nabla g(x, y, z)$. The first method completely fails. The second method seems to work, but it spits out $g(x, y, z)=x z+y z$, which is not an antiderivative of G. Moral: Always check that the curl is zero before you try to find an antiderivative.

[^4]: ${ }^{6}$ I guess I should have mentioned that we restrict our attention to reasonable functions.

