
Math 211 Summer 2022
Homework 5 Drew Armstrong

Problem 1. Surface Area. Fix an angle 0 ≤ α < π and let D be the region on the surface
of a sphere of radius 1 with angle ≤ α from the vertical:1

(a) Find a parametrization for D of the form r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉.
(b) Use your parametrization to compute the surface area of D.

(a): We will use spherical coordinates (ρ, θ, ϕ) with a fixed radius ρ = 1. Recall that spherical
coordinates are connected to polar and Cartesian coordinates via two right triangles:2

From the picture we obtain{
x = r cos θ
y = r sin θ

}
and

{
z = ρ cosϕ
r = ρ sinϕ

}
, hence

 x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
z = ρ cosϕ


After fixing ρ = 1 this becomes

r(θ, ϕ) = 〈x(θ, ϕ), y(θ, ϕ), z(θ, ϕ)〉
= 〈sinϕ cos θ, sinϕ sin θ, cosϕ〉

This parametrization covers the whole surface of the unit sphere as 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π.
In this problem we are only interested in the region where 0 ≤ ϕ ≤ α, for the fixed angle α.

1On the Earth, this is the region above latitute (90− α) degrees North.
2Different books use different naming conventions. Instead of memorizing the formulas, just memorize the

picture. Then you can derive the formulas for yourself.



(b): To compute the surface area, we first need the stretch factor ‖rθ × rϕ‖. We have

rθ = 〈− sinϕ sin θ, sinϕ cos θ, 0〉,
rϕ = 〈cosϕ cos θ, cosϕ sin θ,− sinϕ〉,

rθ × rϕ = 〈− sin2 ϕ cos θ, sin2 ϕ sin θ,− sinϕ cosϕ sin2 θ − sinϕ cosϕ cos2 θ〉
= 〈− sin2 ϕ cos θ, sin2 ϕ sin θ,− sinϕ cosϕ〉,

and hence

‖rθ × rϕ‖2 = sin4 ϕ cos2 θ + sin4 ϕ sin2 θ + sin2 ϕ cos2 ϕ

= sin4 ϕ+ sin2 ϕ cos2 ϕ

= sin2 ϕ
(
sin2 ϕ+ cos2 ϕ

)
= sin2 ϕ,

‖rθ × rϕ‖ = sinϕ.

We don’t need to write | sinϕ| because in spherical coordinates we always have 0 ≤ ϕ ≤ π.
Finally, we compute the area:∫∫∫

D
1 dA =

∫∫
D
‖rθ × rϕ‖ dθdϕ

=

∫ 2π

0
dθ ·

∫ α

0
sinϕdϕ

= 2π (− cos(α) + cos(0))

= 2π(1− cosα).

Check: When α = 0 we have area 0, as exected. When α = π/2 we have area 2π which is the
correct area of the hemisphere. When α = π we have 4π which is the correct surface area of
the full unit sphere.

Problem 2. Surface Area. Let D be the surface of the cone z2 = x2 + y2 for values z
between 0 and 1:

(a) Find a parametrization for D of the form r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉.
(b) Use your parametrization to compute the surface area of D.

(a): We will use polar coordinates x = u cos v and y = u sin v.3 Then the equation of the cone
becomes z2 = x2 + y2 = u2, or z = u (since z and u are both positive). As z goes from 0 to

3I don’t write x = r cos θ and y = r sin θ because we are already using the letter r.



1, so does u. Hence the surface of the cone has the following parametrization:

r(u, v) = 〈u cos v, u sin v, u〉 where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π.

Here is a picture:

(b): First we compute the stretch factor:

ru = 〈cos v, sin v, 1〉,
rv = 〈−u sin v, u cos v, 0〉,

ru × rv = 〈−u cos v,−u sin v,−u sin2 v − u cos2 v〉
= 〈−u cos v,−u sin v,−u〉,

‖ru × rv‖2 = u2 cos2 v + u2 sin2 v + u2

= u2 + u2

= 2u2,

‖ru × rv‖ =
√

2 · u.

Then we compute the area: ∫∫∫
D

1 dA =

∫∫∫
D

√
2 · u dudv

=
√

2 ·
∫ 2π

0
dv ·

∫ 1

0
u du

=
√

2 · 2π · (1/2)

=
√

2 · π.

Remark: More generally, the surface area of a cone with height h and base a circle of radius
a is πa

√
h2 + a2. In our case we have a = h = 1.

Problem 3. Gravitational Potential Near the Surface of a Planet. Choose a coor-
dinate system near the surface of a planet, so that z = 0 is the ground and the z-axis points
“up”. A particle of mass m at a point (x, y, z) with z ≥ 0 feels a constant gravitational force
of F(x, y, z) = 〈0, 0,−mg〉.



(a) Suppose that the particle has initial position and initial velocity as follows:

r(0) = 〈0, 0, 0〉,
r′(0) = 〈u, v, w〉.

Integrate Newton’s equation F = mr′′(t) to find r′(t) and r(t).
(b) Find a formula for the kinetic energy at time t:

KE(t) =
1

2
m‖r′(t)‖2.

(c) Find a scalar field f(x, y, z) such that F = −∇f and f(0, 0, 0) = 0. This f is called
the gravitational potential of the particle.4

(d) Find a formula for the potential energy at time t:

PE(t) = f(r(t)).

(e) Check that the total mechanical energy KE(t) + PE(t) is constant.

(a): Since F = 〈0, 0,−mg〉, Newton’s 2nd Law tells us that

mr′′(t) = F

mr′′(t) = 〈0, 0,−mg〉
r′′(t) = 〈0, 0,−g〉.

In other words, the particle has constant acceleration. We integrate this once to get

r′(t) = 〈c1, c2,−gt+ c3〉,
for some constants c1, c2, c3. The initial condition r′(0) = 〈u, v, w〉 tells us that 〈c1, c2, c3〉 =
〈u, v, w〉, so the velocity at time t is

r′(t) = 〈u, v,−gt+ w〉.
We integrate again to obtain

r(t) =

〈
ut+ c3, vt+ c4,−

1

2
gt2 + wt+ c6

〉
for some constants c4, c5, c6. Then the initial condition r(0) = 〈0, 0, 0〉 tells us that 〈c4, c5, c6〉 =
〈0, 0, 0〉, so the position at time t is

r(t) =

〈
ut, vt,−1

2
gt2 + wt

〉
.

(b): The kinetic energy at time t is

KE(t) =
1

2
m‖r′(t)‖2

=
1

2
m‖〈u, v,−gt+ w〉‖2

=
1

2
m
(
u2 + v2 + (−gt+ w)2

)
=

1

2
m
(
u2 + v2 + g2t2 − 2gtw + w2

)
=

1

2
m(u2 + v2 + w2) +

1

2
mg2t2 −mgtw.

4Actually, the choice f(0, 0, 0) = 0 is arbitrary. We are just saying that a particle on the ground has zero
gravitational potential. Only changes in potential energy are physically meaningful.



(c): A constant vector field is necessarily conservative. For example, consider F = 〈a, b, c〉 for
some constants a, b, c. Then we observe that F = ∇f where f(x, y, z) = ax+ by+ cz. Indeed,
it is easy to check that ∇f = 〈fx, fy, fz〉 = 〈a, b, c〉. We could find this f by brute force, or
we could use the Fundamental Theorem of Line Integrals. For a given point (x, y, z) we will
integrate F along the path r(t) = 〈xt, yt, zt〉 for t from 0 to 1. If F = ∇f then we must have

f(x, y, z)− f(0, 0, 0) =

∫ 1

0
F(r(t)) • r′(t) dt

=

∫ 1

0
F(xt, yt, zt) • 〈x, y, z〉 dt

=

∫ 1

0
〈a, b, c〉 • 〈x, y, z〉 dt

=

∫ 1

0
(ax+ by + cz)t dt

= ax+ by + cz.

In the case when F = 〈a, b, c〉 = 〈0, 0,−mg〉 we have F = ∇f where f(x, y, z) = 0x+0y−mgz =
−mgz. But for physical reasons we write F = −∇f with f(x, y, z) = −mgz.

(d): The potential energy at time t is

PE(t) = f(r(t))

= f

(
ut, vt,−1

2
gt2 + wt

)
= mg

(
−1

2
gt2 + wt

)
= −1

2
mg2t2 +mgwt.

(e): From parts (b) and (d) we see that

KE(t) + PE(t) =
1

2
m(u2 + v2 + w2),

which is independent of t.

Problem 4. Conservative Vector Fields. Consider the following vector fields:

F(x, y, z) = 〈y + z, x+ z, x+ y〉,
G(x, y, z) = 〈−y + z, x+ z, x+ y〉.

(a) Compute ∇× F and ∇×G. Observe that F is conservative, while G is not.
(b) Now think of F and G as force fields. Compute the work done by F and G on a

particle of mass 1 traveling around the circle r(t) = 〈cos t, sin t, 0〉 for 0 ≤ t ≤ 2π.
(c) Find a scalar field f(x, y, z) such that F = ∇f .

(a): We have

∇× F = 〈(x+ y)y − (x+ z)z, (y + z)z − (x+ y)x, (x+ z)x − (y + z)y〉
= 〈1− 1, 1− 1, 1− 1〉
= 〈0, 0, 0〉



and

∇×G = 〈(x+ y)y − (x+ z)z, (−y + z)z − (x+ y)x, (x+ z)x − (−y + z)y〉
= 〈1− 1, 1− 1, 1− (−1)〉
= 〈0, 0, 2〉.

This tells us that F is conservative, while G is not.

(b): The work done by a force field F acting on moving particle r(t) is defined as∫
F(r(t)) • r′(t) dt.

In the case of F(x, y, z) = 〈y + z, x+ z, x+ y〉 and r(t) = 〈cos t, sin t, 0〉 we have∫
F(r(t)) • r′(t) dt =

∫
F(cos t, sin t, 0) • 〈− sin t, cos t, 0〉 dt

=

∫
〈sin t+ 0, cos t+ 0, cos t+ sin t〉 • 〈− sin t, cos t, 0〉 dt

=

∫
(− sin2 t+ cos2 t+ 0) dt

=

∫
cos(2t) dt

=

[
1

2
sin(2t)

]2π
0

=
1

2
sin(4π)− 1

2
sin(0)

= 0− 0

= 0.

This was expected because the integral of a conservative vector around any loop is zero. In
the case of G = 〈−y + z, x+ z, x+ y〉 we have∫

G(r(t)) • r′(t) dt =

∫
F(cos t, sin t, 0) • 〈− sin t, cos t, 0〉 dt

=

∫
〈− sin t+ 0, cos t+ 0, cos t+ sin t〉 • 〈− sin t, cos t, 0〉 dt

=

∫
(sin2 t+ cos2 t+ 0) dt

=

∫ 2π

0
1 dt

= 2π.

The fact that this integral is not zero again verifies that the vector field G is not conservative.

(c): We are looking for a scalar field f(x, y, z) satisfying

〈fx, fy, fz〉 = 〈y + z, x+ z, x+ y〉.
We will do this in two ways.

Brute Force. Since fx(x, y, z) = y + z we must have

f(x, y, z) = xy + xz + g(y, z) for some function g(y, z).



Then since f(x, y, z) = xy + xz + g(y, z) and fy(x, y, z) = x+ z we must have

x+ gy(y, z) = x+ z

gy(y, z) = z

g(y, z) = yz + h(z) for some function h(z).

Finally, since f(x, y, z) = xy + xz + yz + h(z) and fz(x, y, z) = x+ y we must have

x+ y + hz(z) = x+ y

hz(z) = 0

h(z) = constant.

We conclude that f(x, y, z) = xy + xz + yz, plus some arbitrary constant.

Use the Fundamental Theorem of Line Integrals. If F(x, y, z) = ∇f(x, y, z) then for
any path C we have ∫

C
F = f(end point of C)− f(start point of C).

In particular, if we choose the path r(t) = 〈xt, yt, zt〉 for 0 ≤ t ≤ 1 then we obtain

f(x, y, z)− f(0, 0, 0) =

∫
F(r(t)) • r′(t) dt

=

∫
F(xt, yt, zt) • 〈x, y, z〉 dt

=

∫
〈yt+ zt, xt+ zt, xt+ yt〉 • 〈x, y, z〉 dt

=

∫
((yt+ zt)x+ (xt+ zt)y + (xt+ yt)z) dt

= 2(xy + xz + yz) ·
∫ 1

0
t dt

= xy + xz + yz.

Hence f(x, y, z) = xy+ xz + yz + f(0, 0, 0), where f(0, 0, 0) is just some arbitrary constant. I
like this method better because it doesn’t require any cleverness.

Finally, let’s check that we got the right answer:

∇(xy + xz + yz) = 〈(xy + xz + yz)x, (xy + xz + yz)y, (xy + xz + yz)z〉
= 〈y + z + 0, x+ 0 + z, 0 + x+ y〉.
= F(x, y, z).

This again confirms that F is a conservative vector field.5

Problem 5. Div, Grad, Curl. Consider a scalar field f(x, y, z) and a vector field F(x, y, z) =
〈P (x, y, z), Q(x, y, z), R(x, y, z)〉. Then we define vector fields called the “gradient of f” and
the “curl of F”:

grad(f) = ∇f = 〈fx, fy, fz〉,

5We could try to use these methods to find a scalar function g(x, y, z) such that G(x, y, z) = ∇g(x, y, z). The
first method completely fails. The second method seems to work, but it spits out g(x, y, z) = xz+ yz, which is
not an antiderivative of G. Moral: Always check that the curl is zero before you try to find an antiderivative.



curl(F) = ∇× F = 〈Ry −Qz, Pz −Rx, Qx − Py〉.
We also define a scalar field called the “divergence of F”:

div(F) = ∇ • F = Px +Qy +Rz.

(a) Check that curl(grad(f)) = ∇× (∇f) = 〈0, 0, 0〉.
(b) Check that div(curl(F)) = ∇ • (∇× F) = 0.

(a): Write ∇f = 〈fx, fy, fz〉 = 〈P,Q,R〉. Then we have

∇× (∇f) = ∇× 〈P,Q,R〉
= 〈Ry −Qz, Pz −Rx, Qx − Py〉
= 〈fzy − fyz, fxz − fzx, fyx − fxy〉
= 〈0, 0, 0〉.

Here we used the fact that mixed partials commute for any reasonable function.6

(b): Write ∇× F = 〈Ry −Qz, Pz −Rx, Qx − Py〉 = 〈S, T, U〉. Then we have

∇ • (∇× F) = Sx + Ty + Uz

= (Ry −Qz)x + (Pz −Rx)y + (Qx − Py)z
= Ryx −Qzx + Pzy −Rxy +Qxz − Pyz
= (Pzy − Pyz) + (Qxz −Qzx) + (Ryx −Rxy)
= 0.

Here again we used the fact that mixed partials commute.

6I guess I should have mentioned that we restrict our attention to reasonable functions.


