Math 211 Summer 2022
Homework 5 Drew Armstrong

Problem 1. Surface Area. Fix an angle 0 < o < 7 and let D be the region on the surface
of a sphere of radius 1 with angle < « from the verticalﬂ
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(a) Find a parametrization for D of the form r(u,v) = (z(u,v),y(u,v), z(u,v)).
(b) Use your parametrization to compute the surface area of D.

(a): We will use spherical coordinates (p, 0, ¢) with a fixed radius p = 1. Recall that spherical
coordinates are connected to polar and Cartesian coordinates via two right trianglesﬂ
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From the picture we obtain

x =rcost 2 = pcos xr = psingcosf
{ _ i } and { _rre }7 hence y = psinpsind
y =rsind r = psing
Z = pcose

After fixing p = 1 this becomes
r(0,¢) = (x(0,¢),y(0, ¢), 2(0, ©))
= (sin p cos 0, sin p sin 6, cos )

This parametrization covers the whole surface of the unit sphere as 0 < 0 < 27 and 0 < ¢ < 7.
In this problem we are only interested in the region where 0 < ¢ < «, for the fixed angle «.

1On the Earth, this is the region above latitute (90 — o) degrees North.
2Different books use different naming conventions. Instead of memorizing the formulas, just memorize the
picture. Then you can derive the formulas for yourself.



(b): To compute the surface area, we first need the stretch factor |[rg x ry||. We have
rg = (—sinpsinf, sin pcos b, 0),
r, = (cospcosf,cos psinf, —sin ),
rg X r, = (—sin® ¢ cos 0, sin? psin 6, — sin ¢ cos @ sin® @ — sin @ cos ¢ cos? )
= (—sin? p cos B, sin? psin @, — sin  cos ),
and hence
|lrg x er2 = sin* p cos? 0 + sin? ¢ sin? O + sin® p cos? ¢
= sin* ¢ + sin? g cos? ¢
= sin? © (Sin2 p+ cos? gp)
= sin® o,
[rg x ry|| = sin .

We don’t need to write |sin | because in spherical coordinates we always have 0 < ¢ < 7.
Finally, we compute the area:

/// ldA—// |lre x ry|| dOdy
D

27

/ do - / sin @ dy

= 27 (— cos(a) + cos(0))
= 2m(1 — cos ).

Check: When o = 0 we have area 0, as exected. When o = 7/2 we have area 27 which is the
correct area of the hemisphere. When o = 7 we have 4w which is the correct surface area of
the full unit sphere.
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Problem 2. Surface Area. Let D be the surface of the cone 22 = 22 + y? for values z

between 0 and 1:

(a) Find a parametrization for D of the form r(u,v) = (z(u,v), y(u,v), z(u,v)).
(b) Use your parametrization to compute the surface area of D.

(a): We will use polar coordinates z = ucosv and y = usinfuﬁ Then the equation of the cone

becomes z? = 22 + y? = u?, or z = u (since z and u are both positive). As z goes from 0 to

31 don’t write z = r cos and y = rsin 6§ because we are already using the letter r.



1, so does u. Hence the surface of the cone has the following parametrization:
r(u,v) = (ucosv,usinv,u) where 0 <wu <1and0<wv<27.

Here is a picture:

(uc,o.j\/,(AS‘Tv’lV/ U-)

((ACorV/MS;h\// O)

(b): First we compute the stretch factor:

= (coswv,sinw, 1),

usinv, ucoswv,0),

(=
ry X Ty = (—ucosv, —usinv, —usin® v — u cos v)
= (—ucosv, —usinv, —u),
[Ty X 1| = u? cos? v + u? sin® v + u?
= u? + o2
= 2u2,

|ty X 10l = V2 - u.

Then we compute the area:
/// 1dA:/// V2 - ududv
D
2
=2 / dv - / udu
2)

2-2m-(1/2)
2.

Remark: More generally, the surface area of a cone with height h and base a circle of radius
a is mav/h? + a2. In our case we have a = h = 1.

Problem 3. Gravitational Potential Near the Surface of a Planet. Choose a coor-
dinate system near the surface of a planet, so that z = 0 is the ground and the z-axis points

up”. A particle of mass m at a point (x,y, z) with z > 0 feels a constant gravitational force
of F(z,y,z) = (0,0, —mg).



(a) Suppose that the particle has initial position and initial velocity as follows:
r(0) =(0,0,0),
r'(0) = (u,v,w).

Integrate Newton’s equation F = mr”(t) to find r'(¢) and r(¢).
(b) Find a formula for the kinetic energy at time ¢:

KE(r) = gl (1)

(c) Find a scalar field f(x,y,z) such that F = —V f and f(0,0,0) = 0. This f is called
the gravitational potential of the particleﬁ
(d) Find a formula for the potential energy at time ¢:

PE(t) = f(x(t)).
(e) Check that the total mechanical energy KE(¢) + PE(t) is constant.

(a): Since F = (0,0, —mg), Newton’s 2nd Law tells us that
mr’(t) = F
mr” (t) = (0,0, —mg)
r’(t) = (0,0, —g).
In other words, the particle has constant acceleration. We integrate this once to get
r'(t) = {e1,c2, —gt + c3),

for some constants ¢y, ¢z, ¢3. The initial condition r’'(0) = (u, v, w) tells us that (c1,ca,c3) =
(u,v,w), so the velocity at time ¢ is

r'(t) = (u,v, —gt +w).

We integrate again to obtain
L o
r(t) = ( ut+ c3, vt + c4, _§Qt + wt + ¢

for some constants ca, ¢5, ¢g. Then the initial condition r(0) = (0,0, 0) tells us that (c4, c5, c6) =
(0,0,0), so the position at time t is

1
r(t) = <ut, ot, _§Qt2 + wt> .

(b): The kinetic energy at time ¢ is
= sm||(u, v, —gt + w)|?
=5m (u? +v* + (—gt + w)?)
1
= §m (u2 +v+ thQ — 2gtw + w2)
1 1
= im(UQ + v 4 w?) + §mg2t2 — mgtw.

4Actually, the choice f(0,0,0) = 0 is arbitrary. We are just saying that a particle on the ground has zero
gravitational potential. Only changes in potential energy are physically meaningful.



(c): A constant vector field is necessarily conservative. For example, consider F = (a, b, ¢) for
some constants a, b, c. Then we observe that F = V f where f(z,y, z) = ax + by + cz. Indeed,
it is easy to check that Vf = (fs, fy, f-) = (a,b,c). We could find this f by brute force, or
we could use the Fundamental Theorem of Line Integrals. For a given point (z,y, z) we will
integrate F along the path r(t) = (zt, yt, zt) for t from 0 to 1. If F = V f then we must have

1
f(z,y,2) — f(0,0,0) = /0 F(r(t)) er'(t)dt
— /1 F(xt, yt, zt) @ (x,y,2) dt
0
1
:/]@@@daydﬁ
0

1

:/ (azx + by + cz)t dt
0

= ax + by + cz.

In the case when F = (a, b, ¢) = (0,0, —mg) we have F = V f where f(x,y, z) = 0z+0y—mgz =
—mgz. But for physical reasons we write F = —V f with f(z,y, 2) = —mgz.

(d): The potential energy at time ¢ is
PE(t) = f(r(?))

1
= f (ut, t, —§th + wt)

—mg (~Lgt + wt
=mg | —59t" +w

1
= —§mg2t2 + mgwt.

(e): From parts (b) and (d) we see that
1
KE(t) + PE(t) = im(u2 + 0?2 + w?),

which is independent of ¢.

Problem 4. Conservative Vector Fields. Consider the following vector fields:
F(z,y,2) ={y+z2+z1+y),
G(z,y,2) =(—y+z,x+z2+y).
(a) Compute V x F and V x G. Observe that F is conservative, while G is not.
(b) Now think of F and G as force fields. Compute the work done by F and G on a

particle of mass 1 traveling around the circle r(t) = (cost,sint,0) for 0 < ¢ < 27.
(c) Find a scalar field f(z,y, z) such that F = V f.

(a): We have
VXF=(z+y)y—(@+2):H+2):— (@+Y) (@+2)s— (y+2)y)
=(1-1,1-1,1-1)
= (0,0,0)



and
VxG=(x+y)y— (@+2):(-y+2):— (@+ Y (@+2)s— (—y+2)y)
=(1-1,1-1,1—(=1))
=(0,0,2).

This tells us that F is conservative, while G is not.

(b): The work done by a force field F acting on moving particle r(¢) is defined as

/F(r(t)) o1/ (t)dt.
In the case of F(z,y,2) = (y + z,x + z,x + y) and r(t) = (cost,sint,0) we have

/F(r(t)) or'(t)dt = /F(cos t,sint,0) e (—sint, cost,0) dt

(sint 4+ 0,cost + 0,cost + sint) e (—sint, cost,0) dt

cos(2t) dt

:/(—sin2t—|—0052t—|—0)dt

- B sin(2t)] zﬂ

1 1
=3 sin(4m) — 3 sin(0)
=0-0
=0.

This was expected because the integral of a conservative vector around any loop is zero. In
the case of G = (—y + 2,2 + 2,2 + y) we have

/G(r(t)) or'(t)dt = /F(cost,sint, 0) e (—sint,cost,0)dt
= /(— sint + 0,cost + 0,cost + sint) @ (—sint, cost,0) dt

= /(sin2 t+cos®t 4 0) dt

21
:/ Ldt
0

= 2.

The fact that this integral is not zero again verifies that the vector field G is not conservative.

(c): We are looking for a scalar field f(x,y, z) satisfying
<fx7fy7fz> = <Z/ +z,x+ 2,2+ y>-

We will do this in two ways.

Brute Force. Since f;(z,y,2) =y + 2z we must have

f(z,y,z) =xy + 22 + g(y, z) for some function g(y, 2).



Then since f(z,y,2) = zy + 2z + g(y, 2) and fy(x,y,2) = x + z we must have
T+gy(y,2) =x+2

gy(y,2) =z
9(y, z) = yz + h(z) for some function h(z).
Finally, since f(x,y,2) = 2y + 2z + yz + h(z) and f.(x,y,z) = = + y we must have
r+y+hi(z)=ac+y
h.(z) =0
h(z) = constant.

We conclude that f(z,y,z) = xy + 2z + yz, plus some arbitrary constant.

Use the Fundamental Theorem of Line Integrals. If F(z,y,2) = Vf(x,y,z) then for
any path C we have

/ F = f(end point of C) — f(start point of C).
C

In particular, if we choose the path r(t) = (zt, yt, zt) for 0 <t <1 then we obtain

f(x,y,z) *f(0,0,0) =

—~

F(r(t)) o /() dt

F(at,yt, 2t) @ (x,y,z) dt

(yt + zt, xt + 2t, xt + yt) o (x,y, ) dt

—— — —

((yt + zt)x + (xt + 2t)y + (xt + yt)z) dt

[\]

1
(xy + zz + yz) / tdt
0
=2y +xz+y=z.
Hence f(z,y,2) = xy +xz+yz + £(0,0,0), where f(0,0,0) is just some arbitrary constant. I
like this method better because it doesn’t require any cleverness.
Finally, let’s check that we got the right answer:
V(zy + 2z +y2) = (2y + 22 + y2)a, (2y + 22 + y2)y, (vy + 22 + y2)2)
=(y+2z+0,2+0+2,04+2z+y).
- F(.’E, Y, Z)

This again confirms that F is a conservative vector ﬁeldﬂ

Problem 5. Div, Grad, Curl. Consider a scalar field f(z,y, z) and a vector field F(x, y, z) =
(P(z,y,2),Q(x,y, 2), R(z,y,2)). Then we define vector fields called the “gradient of f” and
the “curl of F”:

grad(f) = Vf = <fzafy7fz>>

5We could try to use these methods to find a scalar function g(z, y, z) such that G(z,y, z) = Vg(z,y, z). The
first method completely fails. The second method seems to work, but it spits out g(z,y, z) = vz + yz, which is
not an antiderivative of G. Moral: Always check that the curl is zero before you try to find an antiderivative.



curl(F) =V xF=(Ry — Q., P, — Ry, Qz — Py).
We also define a scalar field called the “divergence of F”:
div(F)=VeF =P, +Q,+R..
(a) Check that curl(grad(f)) =V x (Vf) = (0,0,0).
(b) Check that div(curl(F)) =V e (V x F) =0.
(a): Write Vf = (fy, fy, f-) = (P,Q, R). Then we have
Vx(Vf)=Vx(P,Q,R)
=(Ry — Q:, P, — Ry, Qu — Py)
= (fay = fyz for = [ows fya — fay)
=(0,0,0).

Here we used the fact that mixed partials commute for any reasonable functionﬁ

(b): Write VX F = (R, — Q., P, — R;,Qy — Py) = (S,T,U). Then we have
Ve(VxF)=8,+T,+U.
= (Ry_Qz)m+(Pz_Rx)y+(Qw—Py)z
:Ryx*sz+sz*ny+Q:L‘z*Pyz

= (sz - PyZ) + (sz - sz) + (Ryx - ny)
= 0.

Here again we used the fact that mixed partials commute.

61 guess I should have mentioned that we restrict our attention to reasonable functions.



