Problem 1. Integration over a Rectangle. Let $f(x, y)=6 x^{2} y$ and consider the rectangle R where $-1 \leq x \leq 1$ and $0 \leq y \leq 4$.
(a) Compute the integral $\iint_{R} f(x, y) d x d y$ by integrating over x first.
(b) Compute the integral $\iint_{R} f(x, y) d x d y$ by integrating over y first. Observe that you get the same answer.
(a): We have

$$
\begin{aligned}
\iint_{R} f d A & =\iint_{R} 6 x^{2} y d x d y \\
& =\int_{0}^{4}\left(\int_{-1}^{1} 6 x^{2} y d x\right) d y \\
& =\int_{0}^{4}\left[2 x^{3} y\right]_{-1}^{1} d y \\
& =\int_{0}^{4}\left[2(1)^{2} y-2(-1)^{3} y\right] d y \\
& =\int_{0}^{4} 4 y d y \\
& =\left[2 y^{2}\right]_{0}^{4} \\
& =32 .
\end{aligned}
$$

(b): We have

$$
\begin{aligned}
\iint_{R} f d A & =\iint_{R} 6 x^{2} y d x d y \\
& =\int_{-1}^{1}\left(\int_{0}^{4} 6 x^{2} y d y\right) x y \\
& =\int_{-1}^{1}\left[3 x^{2} y^{2}\right]_{0}^{4} d y \\
& =\int_{-1}^{1}\left[3 x^{2}(4)^{2}-3 x^{2}(0)^{2}\right] d y \\
& =\int_{-1}^{1} 48 x^{2} d x \\
& =\left[16 x^{3}\right]_{-1}^{1} \\
& =16(1)^{3}-16(-1)^{3} \\
& =32 .
\end{aligned}
$$

Remark: Since the integrand $6 x^{2} y$ is separable, we could also write

$$
\iint 6 x^{2} y d x d y=6 \int_{-1}^{1} x^{2} d x \int_{0}^{4} y d y
$$

$$
=6 \cdot\left[\frac{1}{3} x^{3}\right]_{-1}^{1} \cdot\left[\frac{1}{2} y^{2}\right]_{0}^{4}=\cdots=32
$$

Problem 2. Polar Coordinates. Cartesian coordinates (x, y) and polar coordinates (r, θ) are related as follows:

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\arctan (y / x)
\end{array}\right\}
$$

We will use the following notation ${ }^{11}$ for the determinants of the Jacobian matrices:

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\operatorname{det}\left(\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right) \quad \text { and } \quad \frac{\partial(r, \theta)}{\partial(x, y)}=\operatorname{det}\left(\begin{array}{ll}
r_{x} & r_{y} \\
\theta_{x} & \theta_{y}
\end{array}\right) .
$$

(a) Compute $\partial(x, y) / \partial(r, \theta)$.
(b) Compute $\partial(r, \theta) / \partial(x, y)$ and verify that

$$
\frac{\partial(x, y)}{\partial(r, \theta)} \cdot \frac{\partial(r, \theta)}{\partial(x, y)}=1
$$

(a): First we compute the partial derivatives:

$$
\begin{aligned}
& x_{r}=\cos \theta, \\
& x_{\theta}=-r \sin \theta, \\
& y_{r}=\sin \theta, \\
& y_{\theta}=r \cos \theta .
\end{aligned}
$$

Then we compute the determinant:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right) \\
& =(\cos \theta)(r \cos \theta)-(\sin \theta)(-r \sin \theta) \\
& \left.=r \cos ^{2} \theta+r \sin ^{2} \theta\right) \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =r
\end{aligned}
$$

(b): First we compute the partial derivatives:

$$
\begin{aligned}
& r_{x}=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}(2 x)=\frac{x}{\sqrt{x^{2}+y^{2}}}, \\
& r_{y}=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}(2 y)=\frac{y}{\sqrt{x^{2}+y^{2}}}, \\
& \theta_{x}=\frac{1}{(y / x)^{2}+1} \cdot \frac{-y}{x^{2}}=\cdots=\frac{-y}{x^{2}+y^{2}}, \\
& \theta_{y}=\frac{1}{(y / x)^{2}+1} \cdot \frac{1}{x}=\cdots=\frac{x}{x^{2}+y^{2}} .
\end{aligned}
$$

[^0]Then we compute the determinant:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
r_{x} & r_{y} \\
\theta_{x} & \theta_{y}
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
x / \sqrt{x^{2}+y^{2}} & y / \sqrt{x^{2}+y^{2}} \\
-y /\left(x^{2}+y^{2}\right) & x /\left(x^{2}+y^{2}\right)
\end{array}\right) \\
& =\frac{x}{\sqrt{x^{2}+y^{2}}} \cdot \frac{x}{x^{2}+y^{2}}-\frac{-y}{x^{2}+y^{2}} \cdot \frac{y}{\sqrt{x^{2}+y^{2}}} \\
& =\frac{x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
& =\frac{1}{\sqrt{x^{2}+y^{2}}} .
\end{aligned}
$$

Since $r=\sqrt{x^{2}+y^{2}}$ this implies that

$$
\frac{\partial(x, y)}{\partial(r, \theta)} \cdot \frac{\partial(r, \theta)}{\partial(x, y)}=r \cdot \frac{1}{r}=1,
$$

as expected.
Remark: It's pretty cool that we can predict the answer to part (b) without having to do the messy computation.

Problem 3. Integration Over a Tetrahedron. Let E be the solid tetrahedron in \mathbb{R}^{3} with vertices $(0,0,0),(1,0,0),(0,2,0)$ and $(0,0,3)$.
(a) Find a parametrization for this region.
(b) Use your parametrization to compute the volume of E.
(a): First we fix a value of x between 0 and 1 . Then y can range between 0 and $2(1-x)$. After choosing y, then z can range between 0 and $3(1-x-y / 2)$. Here is a picture:

The red line in the x, y-plane has equation $x / 1+y / 2=1$ because it has intercepts $(1,0)$ and $(0,2)$. The blue plane has equation $x / 1+y / 2+z / 3=1$ because it has intercepts $(1,0,0)$, $(0,2,0)$ and $(0,0,3)$.
(b): The volume of the tetrahedron is $\iiint_{E} 1 d V=\iiint_{E} 1 d x d y d z$. Because of the parametrization we must integrate over z, then y, then x :

$$
\begin{aligned}
\iiint_{E} 1 d x d y d z & =\int_{0}^{1}\left(\int_{0}^{2(1-x)}\left(\int_{0}^{3(1-x-y / 2)} 1 d z\right) d y\right) d x \\
& =\int_{0}^{1}\left(\int_{0}^{2(1-x)} 3(1-x-y / 2) d y\right) d x \\
& =\int_{0}^{1}\left[3\left(y-x y-y^{3} / 6\right)\right]_{0}^{2(1-x)} d x \\
& \left.=3 \int_{0}^{1}\left[(1-x) y-y^{3} / 6\right)\right]_{0}^{2(1-x)} d x \\
& =3 \int_{0}^{1}\left[2(1-x)^{2}-8(1-x)^{3} / 6\right] d x \\
& =6 \int_{0}^{1}\left[(1-x)^{2}-4(1-x)^{3} / 6\right] d x \\
& =6 \cdot\left[\frac{1}{3}(1-x)^{3}(-1)-\frac{1}{6}(1-x)^{4}(-1)\right]_{0}^{1} \\
& =6 \cdot\left[\frac{1}{3}-\frac{1}{6}\right] \\
& =6 \cdot \frac{1}{6} \\
& =1 .
\end{aligned}
$$

What a nice answer.

Remark: In general, the tetrahedron with vertices $(0,0,0),(a, 0,0),(0, b, 0)$ and $(0,0, c)$ has volume $a b c / 6$. The easiest way to prove this is to first prove it for $a=b=c=1$ and then use a stretching argument as in Problem 5(b).

Problem 4. Spherical Coordinates. Consider the solid region $E \subseteq \mathbb{R}^{3}$ that is inside the sphere $x^{2}+y^{2}+z^{2} \leq 1$ and above the cone $z^{2}=x^{2}+y^{2}$ with $z \geq 0$. Assume that this region has constant density 1 unit of mass per unit of volume.
(a) Use spherical coordinates to compute the mass $m=\iiint_{E} 1 d V$.
(b) Compute the moment about the $x y$-plane, $M_{x y}=\iiint_{E} z d V$, and use this to find the center of mass. [Hint: Because the shape has rotational symmetry around the z-axis we know that $M_{x z}=M_{y z}=0$.]
(a): Here is a picture of the region:

Note that the cone has slope 1. Indeed, if we set $y=0$ then the equation of the cone becomes

$$
\begin{aligned}
z^{2} & =x^{2}+0^{2} \\
z^{2}-x^{2} & =0 \\
(z-x)(z+x) & =0
\end{aligned}
$$

This implies that $z=x$ or $z=-x$, which gives two lines of slope +1 and -1 in the $x z$-plane. This tells us that the angle φ from the vertical goes from 0 to $\pi / 4$. The distance ρ from the origin goes from 0 to 1 and the angle θ around the z-axis goes from 0 to 2π. The mass is

$$
\begin{aligned}
m & =\iiint_{E} 1 d V \\
& =\iiint_{E} \rho^{2} \sin \varphi d \rho d \theta d \varphi \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{\pi / 4} \sin \varphi d \varphi \cdot \int_{0}^{1} \rho^{2} d \rho \\
& =2 \pi \cdot[-\cos \varphi]_{0}^{\pi / 4} \cdot\left[\frac{1}{3} \rho^{3}\right]_{0}^{1} \\
& =\frac{2}{3} \pi \cdot[-\cos (\pi / 4)+\cos (0)] \\
& =\frac{2}{3} \pi \cdot\left[-\frac{\sqrt{2}}{2}+1\right] \\
& =\frac{\pi}{3}(2-\sqrt{2}) .
\end{aligned}
$$

(b): To compute the moment about the $x y$-plane we use the fact that $z=\rho \cos \varphi$ in spherical coordinates:

$$
\begin{aligned}
M_{x y} & =\iiint_{E} z d V \\
& =\iiint_{E} \rho \cos \varphi \rho^{2} \sin \varphi d \rho d \theta d \varphi \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{\pi / 4} \cos \varphi \sin \varphi d \varphi \cdot \int_{0}^{1} \rho^{3} d \rho \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{\pi / 4} \frac{1}{2} \sin (2 \varphi) d \varphi \cdot \int_{0}^{1} \rho^{3} d \rho \\
& =2 \pi \cdot\left[-\frac{1}{4} \cos (2 \varphi)\right]_{0}^{\pi / 4} \cdot\left[\frac{1}{4} \rho^{4}\right]_{0}^{1} \\
& =\frac{\pi}{8} \cdot[-\cos (\pi / 2)+\cos (0)] \\
& =\frac{\pi}{8} \cdot[-0+1] \\
& =\frac{\pi}{8} .
\end{aligned}
$$

Hence the center of mass is

$$
(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{m}, \frac{M_{x z}}{m}, \frac{M_{x y}}{m}\right)=\left(0,0, \frac{\pi / 8}{\pi(2-\sqrt{2}) / 3}\right)=(0,0,0.64) .
$$

Problem 5. Volume of an Ellipsoid. Let a, b, c be positive.
(a) Use spherical coordinates to compute the volume of the unit sphere: $x^{2}+y^{2}+z^{2}=1$.
(b) Use the change of variables $(x, y, z)=(a u, b v, c w)$ and part (a) to compute the volume of the ellipsoid: $(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=1$.
(a): In spherical coordinates, the unit sphere is described by $0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq \pi$. Hence the volume is ${ }^{2}$

$$
\begin{aligned}
\iiint 1 d V & =\iiint \rho^{2} \sin \varphi d \rho d \theta d \varphi \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{\pi} \sin \varphi d \varphi \cdot \int_{0}^{1} \rho^{2} d \rho \\
& =2 \pi \cdot[-\cos \varphi]_{0}^{\pi} \cdot\left[\frac{1}{3} \rho^{3}\right]_{0}^{1} \\
& =2 \pi \cdot[-(-1)+1] \cdot\left[\frac{1}{3}\right] \\
& =\frac{4}{3} \pi .
\end{aligned}
$$

[^1](b): Consider the change of variables $(x, y, z)=(a u, b v, c z)$. The Jacobian determinant is
\[

$$
\begin{aligned}
\frac{\partial(x, y, z)}{\partial(u, v, w)} & =\operatorname{det}\left(\begin{array}{lll}
x_{u} & x_{v} & x_{w} \\
y_{u} & y_{v} & y_{w} \\
z_{u} & z_{v} & z_{w}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right) \\
& =a \operatorname{det}\left(\begin{array}{ll}
b & 0 \\
0 & c
\end{array}\right)-0 \operatorname{det}\left(\begin{array}{ll}
0 & 0 \\
0 & c
\end{array}\right)+0 \operatorname{det}\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) \\
& =a b c .
\end{aligned}
$$
\]

In other words, the change of variables $(x, y, z)=(a u, b v, c z)$ just scales all volumes by $a b c$. This makes sense because we are just scaling the x, y, z-coordinates by a, b, c, respectively.

The volume of the ellipsoid $(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=1$ is

$$
\begin{aligned}
\iiint_{(y / b)^{2}+(z / c)^{2} \leq 1} 1 d x d y d z & =\iiint_{u^{2}+v^{2}+w^{2} \leq 1} a b c d u d v d w \\
& =a b c \cdot \quad \iiint_{u^{2}+v^{2}+w^{2} \leq 1} 1 d u d v d w \\
& =a b c \cdot \frac{4}{3} \pi
\end{aligned}
$$

Remark: In general, if we scale any solid region by a, b, c in the x, y, z-directions, respectively, then its volume gets multiplied by $a b c$.

$\frac{4}{3} \pi$

$\cdots \frac{4}{3} \pi a b c$

[^0]: ${ }^{1}$ Warning: Just as $d y / d x$ is not a quotient of numbers, $\partial(x, y) / \partial(r, \theta)$ is not a quotient of numbers. It's just a notation for the determinant of the Jacobian matrix.

[^1]: ${ }^{2}$ We could also quote the fact (proved in class) that a sphere of radius R has volume $\frac{4}{3} \pi R^{3}$.

