Problem 1. Lines and Circles. For each curve compute the velocity vector and the speed at time t. Also eliminate t to find an equation relating x and y.
(a) $(x, y)=(a+u t, b+v t)$ where a, b, u, v are constants.
(b) $(x, y)=(a+r \cos t, b+r \sin t)$ where a, b, r are constants.
(a): The velocity and speed are

$$
(d x / d t, d y / d t)=(u, v) \quad \text { and } \quad \sqrt{(d x / d t)^{2}+(d y / d t)^{2}}=\sqrt{u^{2}+v^{2}} .
$$

Note that these are both constant, i.e., they do not depend on $t .1$ To eliminate t we will assume that $u \neq 0$ and $v \neq 0$, so that $x=a+u t$ implies $t=(x-a) / u$ and $y=b+v t$ implies $t=(y-b) / v$. Then equation these expressions for t gives

$$
\begin{aligned}
(x-a) / u & =(y-b) / v \\
v(x-a) & =u(y-b) \\
v(x-a)-u(y-b) & =0 .
\end{aligned}
$$

From our discussion in class we see that this line contains the point (a, b) and is perpendicular to the vector $\langle v,-u\rangle$. Here is a picture:

(b): The velocity and speed are

$$
(d x / d t, d y / d t)=(-r \sin t, r \cos t)
$$

and

$$
\begin{aligned}
\sqrt{(d x / d t)^{2}+(d y / d t)^{2}} & =\sqrt{(-r \sin t)^{2}+(r \cos t)^{2}} \\
& =\sqrt{r^{2}\left(\sin ^{2} t+\cos ^{2} t\right)} \\
& =\sqrt{r^{2}} \\
& =r .
\end{aligned}
$$

[^0]We assume that r is positive, so $\sqrt{r^{2}}=|r|=r$. The speed is constant, but the velocity vector is not constant. We can eliminate t by using the trig identity $\sin ^{2} t+\cos ^{2} t=1$ as follows:

$$
(x-a)^{2}+(y-b)^{2}=(r \cos t)^{2}+(r \sin t)^{2}=r^{2}\left(\cos ^{2} t+\sin ^{2} t\right)=r^{2} .
$$

This is the equation of a circle with radius r, centered at (a, b). Here is a picture:

Problem 2. An Interesting Curve. Consider the parametrized curve

$$
(x, y)=\left(t^{2}-1, t^{3}-t\right)
$$

(a) Eliminate t to find an equation relating x and y. [Hint: Note that $y / x=t$.]
(b) Find the points on the curve where the tangent line is vertical, horizontal, or has slope +1 or -1 . [Hint: The slope of the tangent at time t is $d y / d x=(d y / d t) /(d x / d t)$.]
(c) Use the information in part (b) to sketch the curve.
(a): Substitute $t=y / x$ into the equation $x=t^{2}-1$ to get

$$
\begin{aligned}
x & =(y / x)^{2}-1 \\
x & =y^{2} / x^{2}-1 \\
x^{3} & =y^{2}-x^{2} \\
x^{3}+x^{2} & =y^{2} .
\end{aligned}
$$

(c): Let's write $f(t)=\left(t^{2}-1, t^{3}-t\right)$. The velocity is $f^{\prime}(t)=(d x / d t, d y / d t)=\left(2 t, 3 t^{2}-1\right)$, so the slope of the tangent line at time t is

$$
\frac{d y}{d x}=\frac{d x / d t}{d y / d t}=\frac{3 t^{2}-1}{2 t} .
$$

We note that this expression goes to ∞ as $t \rightarrow 0$, so there is a vertical tangent at the point $f(0)=(-1,0)$. If the tangent line is horizontal (i.e., slope 0) then we have

$$
\frac{3 t^{2}-1}{2 t}=0 \quad \Rightarrow \quad 3 t^{2}-1=0 \quad \Rightarrow \quad t= \pm \sqrt{1 / 3}
$$

Hence the tangent line is horizontal at the points

$$
f(-\sqrt{1 / 3}) \approx(-0.67,0.4) \quad \text { and } f(\sqrt{1 / 3}) \approx(-0.67,-0.4)
$$

If then tangent line has slope +1 then we have

$$
\frac{3 t^{2}-1}{2 t}=1 \quad \Rightarrow \quad 3 t^{2}-1=2 t \quad \Rightarrow \quad t=1 \text { or }-1 / 3
$$

which happens at the points

$$
f(1)=(0,0) \quad \text { and } \quad f(-1 / 3) \approx(-0.89,0.3)
$$

A similar computation shows that the tangent line has slope -1 at the points

$$
f(-1)=(0,0) \quad \text { and } \quad f(1 / 3) \approx(-0.89,-0.3) .
$$

Note that there are two different slopes at the point $(0,0)$ because the curve passes through this point twice, at times $t=-1$ and $t=+1$.
(c): Here is a picture:

Problem 3. The Cycloid. The cycloid is an interesting curve whose arc length can be computed by hand. It is parametrized by

$$
(x, y)=(t-\sin t, 1-\cos t)
$$

(a) Sketch the curve between times $t=0$ and $t=2 \pi$. [Hint: The slope of the tangent line at time t is $(d y / d t) /(d x / d t)=\sin t /(1-\cos t)$, which goes to $+\infty$ as $t \rightarrow 0$ from the right and goes to $-\infty$ as $t \rightarrow 2 \pi$ from the left. You do not need to prove this.]
(b) Compute the arc length between $t=0$ and $t=2 \pi$. [Hint: You will need the trig identities $\sin ^{2} t+\cos ^{2} t=1$ and $1-\cos t=2 \sin ^{2}(t / 2)$.]
(a): Let $f(t)=(t-\sin t, 1-\cos t)$, so the velocity is $f^{\prime}(t)=(d x / d t, d y / d t)=(1-\cos t, \sin t)$ and the slope of the tangent at time t is

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\sin t}{1-\cos t} .
$$

The curve starts at the point $f(0)=(0,0)$, where the tangent is vertical because $\sin t /(1-$ $\cos t) \rightarrow+\infty$ as $t \rightarrow 0$ (from the right). The curve ends at $f(2 \pi)=(2 \pi, 0)$, where the tangent is again vertical because $\sin t /(1-\cos t) \rightarrow-\infty$ as $t \rightarrow 2 \pi$ (from the left) ${ }^{2}$ If the tangent is horizontal and $0 \leq t \leq 2 \pi$ then

$$
\frac{\sin t}{1-\cos t}=0 \quad \Rightarrow \quad \sin t=0 \quad \Rightarrow \quad t=\pi
$$

which occurs at the point $f(\pi)=(\pi, 2)$. Here is a picture:

(b): We can use the trig identities $\sin ^{2} t+\cos ^{2} t=1$ and $1-\cos t=2 \sin ^{2}(t / s)$ to simplify the speed of the parametrization as follows:

$$
\begin{aligned}
\sqrt{(d x / d t)^{2}+(d y / d t)^{2}} & =\sqrt{(1-\cos t)^{2}+(\sin t)^{2}} \\
& =\sqrt{1-2 \cos t+\cos ^{2}+\sin ^{2} t} \\
& =\sqrt{1-2 \cos t+1} \\
& =\sqrt{2-2 \cos t} \\
& =\sqrt{2(1-\cos t)} \\
& =\sqrt{2 \cdot 2 \sin ^{2}(t / 2)} \\
& =2 \sin (t / 2),
\end{aligned}
$$

which is non-negative because $0 \leq t \leq 2 \pi$. Then the arc length between $t=0$ and $t=2 \pi$ is the integral of the speed;

$$
\begin{aligned}
\int_{t=0}^{t=2 \pi} 2 \sin (t / 2) d t & =\int_{u=0}^{u=\pi} 2 \sin u \cdot 2 d u \\
& =4 \cdot[-\cos u]_{u=0}^{u=\pi} \\
& =4 \cdot[-(-1)-(-1)] \\
& =8
\end{aligned}
$$

Remarks:

[^1]- It is possible to eliminate t as follows. First we rewrite $y=1-\cos t$ as

$$
\begin{aligned}
\cos t & =1-y \\
\cos ^{2} t & =1-2 y+y^{2} \\
1-\cos ^{2} t & =2 y-y^{2} \\
\sin ^{2} t & =y(2-y) \\
\sin t & =\sqrt{y(2-y)} \\
t & =\sin ^{-1}(\sqrt{y(2-y)}) .
\end{aligned}
$$

Then we substitute these expressions for t and $\sin t$ into the expression for x to get

$$
x=t-\sin t=\sin ^{-1}(\sqrt{y(2-y)})-\sqrt{y(2-y)} .
$$

What a mess. Clearly it is better to express the cycloid in terms of a parametrization.

- The cycloid is the answer to several interesting problems in physics. For example, suppose you have a pebble stuck in the surface of your car tire. As the car moves the pebble will follow a cycloidal path. Suppose that the tire has radius 1 unit, so the circumference is 2π units. As your travels a straight line distance of 2π units, the pebble will travel an arc length of 8 units.

Problem 4. A Triangle in Space. Consider the following points in \mathbb{R}^{3} :

$$
P=(1,1,-1), \quad Q=(1,-1,1), \quad R=(-1,1,1) .
$$

(a) Find the coordinates of the three side vectors $\mathbf{u}=\overrightarrow{P Q}, \mathbf{v}=\overrightarrow{Q R}, \mathbf{w}=\overrightarrow{P R}$.
(b) Use the length formula to compute the three side lengths $\|\mathbf{u}\|,\|\mathbf{v}\|,\|\mathbf{w}\|$.
(c) Use the dot product to compute the three angles of the triangle.
(a): Using the formula "head minus tail" gives

$$
\begin{aligned}
& \mathbf{u}=\overrightarrow{P Q}=\langle 1-1,-1-1,1-(-1)\rangle=\langle 0,-2,2\rangle, \\
& \mathbf{v}=\overrightarrow{Q R}=\langle-1-1,1-(-1), 1-1\rangle=\langle-2,2,0\rangle, \\
& \mathbf{w}=\overrightarrow{P R}=\langle-1-1,1-1,1-(-1)\rangle=\langle-2,0,2\rangle .
\end{aligned}
$$

(b): Using the formula for length gives

$$
\begin{aligned}
& \|\mathbf{u}\|=\sqrt{\mathbf{u} \bullet \mathbf{u}}=\sqrt{(0)^{2}+(-2)^{2}+(2)^{2}}=\sqrt{8} \\
& \|\mathbf{v}\|=\sqrt{\mathbf{v} \bullet \mathbf{v}}=\sqrt{(-2)^{2}+(2)^{2}+(0)^{2}}=\sqrt{8} \\
& \|\mathbf{w}\|=\sqrt{\mathbf{w} \bullet \mathbf{w}}=\sqrt{(-2)^{2}+(0)^{2}+(2)^{2}}=\sqrt{8} .
\end{aligned}
$$

We see from this that the side lengths are equal, i.e., the triangle is equilateral. This implies that all three angles are 60°, but we will check it anyway.
(c): Consider the picture

$$
\vec{u}=\langle 0,-2,2\rangle=(1,-1,1)
$$

First we compute the dot products:

$$
\begin{aligned}
& \mathbf{u} \bullet \mathbf{v}=(0)(-2)+(-2)(2)+(2)(0)=-4, \\
& \mathbf{u} \bullet \mathbf{w}=(0)(-2)+(-2)(0)+(2)(2)=4 \text {, } \\
& \mathbf{v} \bullet \mathbf{w}=(-2)(-2)+(2)(0)+(0)(2)=4 .
\end{aligned}
$$

Since α is the angle between \mathbf{u} and \mathbf{w} we have

$$
\cos \alpha=\frac{\mathbf{u} \bullet \mathbf{w}}{\|\mathbf{u}\|\|\mathbf{w}\|}=\frac{4}{\sqrt{8} \sqrt{8}}=\frac{1}{2} .
$$

Since β is the angle between $-\mathbf{u}$ and \mathbf{v} we hav \rrbracket^{3}

$$
\cos \beta=\frac{(-\mathbf{u}) \bullet \mathbf{v}}{\|-\mathbf{u}\|\|\mathbf{v}\|}=\frac{-(\mathbf{u} \bullet \mathbf{v})}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{4}{\sqrt{8} \sqrt{8}}=\frac{1}{2} .
$$

Since γ is the angle between $-\mathbf{v}$ and $-\mathbf{w}$ we have

$$
\cos \gamma=\frac{(-\mathbf{v}) \bullet(-\mathbf{w})}{\|-\mathbf{v}\|\|-\mathbf{w}\|}=\frac{\mathbf{v} \bullet \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{4}{\sqrt{8} \sqrt{8}}=\frac{1}{2}
$$

In any case, the angle is

$$
\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \text { or } 300^{\circ} .
$$

Remarks:

- Any two vectors placed tail to tail actually have two different angles between them, which have the same cosine. By convention we choose the smaller of these two angles.
- If we add a fourth point $S=(-1,-1,-1)$ then one can check that each of the triangles $P Q R, P Q S, P R S$ and $Q R S$ is equilateral. Hence the four points $P Q R S$ are the vertices of a regular tetrahedron in space. Furthermore, the center of the tetrahedron is at the origin $O=(0,0,0)$. The angle between any two vertices, measured at the origin, is called the tetrahedral angle θ. We can compute it as follows. Choose two random vertices, say P and Q and consider the vectors with tail at the origin:

$$
\begin{aligned}
& \overrightarrow{O P}=\langle 1,1,-1\rangle, \\
& \overrightarrow{O Q}=\langle 1,-1,1\rangle .
\end{aligned}
$$

[^2]The tetrahedral angle satisfies

$$
\cos \theta=\frac{\overrightarrow{O P} \bullet \overrightarrow{O Q}}{\|\overrightarrow{O P}\|\|\overrightarrow{O Q}\|}=\frac{-1}{\sqrt{3} \cdot \sqrt{3}}=-\frac{1}{3},
$$

hence $\theta=\cos ^{-1}(-1 / 3) \approx 109.5^{\circ}$. Here is a picture:

Problem 5. Some Vector Arithmetic. Let \mathbf{u} and \mathbf{v} be any two vectors, living in 527dimensional space. Use the rules of vector arithmetic (pages 112 and 147) to show that

$$
\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2(\mathbf{u} \bullet \mathbf{v}) .
$$

[Hint: Start with $\|\mathbf{u}-\mathbf{v}\|^{2}=(\mathbf{u}-\mathbf{v}) \bullet(\mathbf{u}-\mathbf{v})$. Now use FOIL and simplify the result.]
For any four vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ we can use the distributive rule for the dot product to get

$$
\begin{aligned}
(\mathbf{a}+\mathbf{b}) \bullet(\mathbf{c}+\mathbf{d}) & =\mathbf{a} \bullet(\mathbf{c}+\mathbf{d})+\mathbf{b} \bullet(\mathbf{c}+\mathbf{d}) \\
& =\mathbf{a} \bullet \mathbf{b}+\mathbf{a} \bullet \mathbf{d}+\mathbf{b} \bullet \mathbf{c}+\mathbf{b} \bullet \mathbf{d}
\end{aligned}
$$

This is a dot product version of FOIL. In our particular case we have

$$
\begin{aligned}
\|\mathbf{u}-\mathbf{v}\|^{2} & =(\mathbf{u}-\mathbf{v}) \bullet(\mathbf{u}-\mathbf{v}) \\
& =\mathbf{u} \bullet \mathbf{u}-\mathbf{u} \bullet \mathbf{v}-\mathbf{v} \bullet \mathbf{u}+\mathbf{v} \bullet \mathbf{v} .
\end{aligned}
$$

Now we use the facts $\mathbf{u} \bullet \mathbf{u}=\|\mathbf{u}\|^{2}, \mathbf{v} \bullet \mathbf{v}=\|\mathbf{v}\|^{2}$ and $\mathbf{u} \bullet \mathbf{v}=\mathbf{v} \bullet \mathbf{u}$ to get

$$
\begin{aligned}
\|\mathbf{u}-\mathbf{v}\|^{2} & =\mathbf{u} \bullet \mathbf{u}-\mathbf{u} \bullet \mathbf{v}-\mathbf{v} \bullet \mathbf{u}+\mathbf{v} \bullet \mathbf{v} \\
& =\mathbf{u} \bullet \mathbf{u}+\mathbf{v} \bullet \mathbf{v}-2(\mathbf{u} \bullet \mathbf{v}) \\
& =\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2(\mathbf{u} \bullet \mathbf{v})
\end{aligned}
$$

We discussed in class how this algebraic identity, together with the geometric Law of Cosines, leads to the theorem of the dot product:

$$
\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

Problem 6. Equations of Lines and Planes. The equation of the line in \mathbb{R}^{2} that contains the point $\left(x_{0}, y_{0}\right)$ and is perpendicular to the vector $\mathbf{n}=\langle a, b\rangle$ is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0 .
$$

The equation of the plane in \mathbb{R}^{3} that contains the point $\left(x_{0}, y_{0}, z_{0}\right)$ and is perpendicular to the vector $\mathbf{n}=\langle a, b, c\rangle$ is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
$$

(a) Find the equation of the line containing $(2,0)$ and perpendicular to $\langle 4,3\rangle$.
(b) Find the equation of the plane containing $(1,0,0)$ and perpendicular to $\langle 1,1,1\rangle$.
(a): Not much to do here. The equation is

$$
\begin{aligned}
4(x-2)+3(y-0) & =0 \\
4 x+3 y & =8 .
\end{aligned}
$$

(b): Again, not much to do. The equation is

$$
\begin{aligned}
1(x-1)+1(y-0)+1(z-0) & =0 \\
x+y+z & =1
\end{aligned}
$$

Why did I make this so easy? I guess I wasn't sure how far we would get in Thursday's lecture.
Remark: This plane contains the points P, Q, R from Problem 4. I probably should have rephrased Problem 5(b) to ask for the equation of the plane containing these points. In that case, we could get a normal vector by taking the cross product of any two vectors in the plane, say $\mathbf{u}=\overrightarrow{P Q}$ and $\mathbf{w}=\overrightarrow{P R}$:

$$
\mathbf{n}=\mathbf{u} \times \mathbf{w}=\langle-2,2,0\rangle \times\langle-2,0,2\rangle .
$$

Using the mnemonic gives

$$
\begin{aligned}
\mathbf{n} & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 2 & 0 \\
-2 & 0 & 2
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \mathbf{i}-\operatorname{det}\left(\begin{array}{ll}
-2 & 0 \\
-2 & 2
\end{array}\right) \mathbf{j}+\operatorname{det}\left(\begin{array}{ll}
-2 & 2 \\
-2 & 0
\end{array}\right) \mathbf{k} \\
& =4 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k} \\
& =\langle 4,4,4\rangle .
\end{aligned}
$$

Then picking any point in the plane, say $P=(1,1,-1)$, gives the equation

$$
\begin{aligned}
4(x-1)+4(y-1)+4(z+1) & =0 \\
4 x+4 y+4 z & =4 \\
x+y+z & =1
\end{aligned}
$$

Yeah, that would have been a better problem.

[^0]: ${ }^{1}$ Thus a parametrized line has constant velocity. Later we will see that any parametrized curve with constant velocity is a line.

[^1]: ${ }^{2}$ You do not need to prove this. The limits can be computed with L'Hopital's rule.

[^2]: ${ }^{3}$ Recall: We measure the angle between vectors "tail to tail".

