
Math 211 Summer 2022
Homework 1 Drew Armstrong

Problem 1. Lines and Circles. For each curve compute the velocity vector and the speed
at time t. Also eliminate t to find an equation relating x and y.

(a) (x, y) = (a+ ut, b+ vt) where a, b, u, v are constants.
(b) (x, y) = (a+ r cos t, b+ r sin t) where a, b, r are constants.

(a): The velocity and speed are

(dx/dt, dy/dt) = (u, v) and
√

(dx/dt)2 + (dy/dt)2 =
√
u2 + v2.

Note that these are both constant, i.e., they do not depend on t.1 To eliminate t we will
assume that u 6= 0 and v 6= 0, so that x = a+ ut implies t = (x− a)/u and y = b+ vt implies
t = (y − b)/v. Then equation these expressions for t gives

(x− a)/u = (y − b)/v
v(x− a) = u(y − b)

v(x− a)− u(y − b) = 0.

From our discussion in class we see that this line contains the point (a, b) and is perpendicular
to the vector 〈v,−u〉. Here is a picture:

(b): The velocity and speed are

(dx/dt, dy/dt) = (−r sin t, r cos t)

and √
(dx/dt)2 + (dy/dt)2 =

√
(−r sin t)2 + (r cos t)2

=

√
r2(sin2 t+ cos2 t)

=
√
r2

= r.

1Thus a parametrized line has constant velocity. Later we will see that any parametrized curve with constant
velocity is a line.



We assume that r is positive, so
√
r2 = |r| = r. The speed is constant, but the velocity vector

is not constant. We can eliminate t by using the trig identity sin2 t+ cos2 t = 1 as follows:

(x− a)2 + (y − b)2 = (r cos t)2 + (r sin t)2 = r2(cos2 t+ sin2 t) = r2.

This is the equation of a circle with radius r, centered at (a, b). Here is a picture:

Problem 2. An Interesting Curve. Consider the parametrized curve

(x, y) = (t2 − 1, t3 − t).
(a) Eliminate t to find an equation relating x and y. [Hint: Note that y/x = t.]
(b) Find the points on the curve where the tangent line is vertical, horizontal, or has slope

+1 or −1. [Hint: The slope of the tangent at time t is dy/dx = (dy/dt)/(dx/dt).]
(c) Use the information in part (b) to sketch the curve.

(a): Substitute t = y/x into the equation x = t2 − 1 to get

x = (y/x)2 − 1

x = y2/x2 − 1

x3 = y2 − x2

x3 + x2 = y2.

(c): Let’s write f(t) = (t2− 1, t3− t). The velocity is f ′(t) = (dx/dt, dy/dt) = (2t, 3t2− 1), so
the slope of the tangent line at time t is

dy

dx
=
dx/dt

dy/dt
=

3t2 − 1

2t
.

We note that this expression goes to ∞ as t → 0, so there is a vertical tangent at the point
f(0) = (−1, 0). If the tangent line is horizontal (i.e., slope 0) then we have

3t2 − 1

2t
= 0 ⇒ 3t2 − 1 = 0 ⇒ t = ±

√
1/3.



Hence the tangent line is horizontal at the points

f(−
√

1/3) ≈ (−0.67, 0.4) and f(
√

1/3) ≈ (−0.67,−0.4).

If then tangent line has slope +1 then we have

3t2 − 1

2t
= 1 ⇒ 3t2 − 1 = 2t ⇒ t = 1 or − 1/3,

which happens at the points

f(1) = (0, 0) and f(−1/3) ≈ (−0.89, 0.3)

A similar computation shows that the tangent line has slope −1 at the points

f(−1) = (0, 0) and f(1/3) ≈ (−0.89,−0.3).

Note that there are two different slopes at the point (0, 0) because the curve passes through
this point twice, at times t = −1 and t = +1.

(c): Here is a picture:

Problem 3. The Cycloid. The cycloid is an interesting curve whose arc length can be
computed by hand. It is parametrized by

(x, y) = (t− sin t, 1− cos t).

(a) Sketch the curve between times t = 0 and t = 2π. [Hint: The slope of the tangent line
at time t is (dy/dt)/(dx/dt) = sin t/(1 − cos t), which goes to +∞ as t → 0 from the
right and goes to −∞ as t→ 2π from the left. You do not need to prove this.]

(b) Compute the arc length between t = 0 and t = 2π. [Hint: You will need the trig
identities sin2 t+ cos2 t = 1 and 1− cos t = 2 sin2(t/2).]



(a): Let f(t) = (t− sin t, 1− cos t), so the velocity is f ′(t) = (dx/dt, dy/dt) = (1− cos t, sin t)
and the slope of the tangent at time t is

dy

dx
=
dy/dt

dx/dt
=

sin t

1− cos t
.

The curve starts at the point f(0) = (0, 0), where the tangent is vertical because sin t/(1 −
cos t)→ +∞ as t→ 0 (from the right). The curve ends at f(2π) = (2π, 0), where the tangent
is again vertical because sin t/(1 − cos t) → −∞ as t → 2π (from the left).2 If the tangent is
horizontal and 0 ≤ t ≤ 2π then

sin t

1− cos t
= 0 ⇒ sin t = 0 ⇒ t = π,

which occurs at the point f(π) = (π, 2). Here is a picture:

(b): We can use the trig identities sin2 t+ cos2 t = 1 and 1− cos t = 2 sin2(t/s) to simplify the
speed of the parametrization as follows:√

(dx/dt)2 + (dy/dt)2 =
√

(1− cos t)2 + (sin t)2

=
√

1− 2 cos t+ cos2 + sin2 t

=
√

1− 2 cos t+ 1

=
√

2− 2 cos t

=
√

2(1− cos t)

=

√
2 · 2 sin2(t/2)

= 2 sin(t/2),

which is non-negative because 0 ≤ t ≤ 2π. Then the arc length between t = 0 and t = 2π is
the integral of the speed;∫ t=2π

t=0
2 sin(t/2) dt =

∫ u=π

u=0
2 sinu · 2du [u = t/2, dt = 2du]

= 4 · [− cosu]u=πu=0

= 4 · [−(−1)− (−1)]

= 8.

Remarks:

2You do not need to prove this. The limits can be computed with L’Hopital’s rule.



• It is possible to eliminate t as follows. First we rewrite y = 1− cos t as

cos t = 1− y
cos2 t = 1− 2y + y2

1− cos2 t = 2y − y2

sin2 t = y(2− y)

sin t =
√
y(2− y)

t = sin−1
(√

y(2− y)
)
.

Then we substitute these expressions for t and sin t into the expression for x to get

x = t− sin t = sin−1
(√

y(2− y)
)
−
√
y(2− y).

What a mess. Clearly it is better to express the cycloid in terms of a parametrization.

• The cycloid is the answer to several interesting problems in physics. For example,
suppose you have a pebble stuck in the surface of your car tire. As the car moves
the pebble will follow a cycloidal path. Suppose that the tire has radius 1 unit, so
the circumference is 2π units. As your travels a straight line distance of 2π units, the
pebble will travel an arc length of 8 units.

Problem 4. A Triangle in Space. Consider the following points in R3:

P = (1, 1,−1), Q = (1,−1, 1), R = (−1, 1, 1).

(a) Find the coordinates of the three side vectors u = ~PQ,v = ~QR,w = ~PR.
(b) Use the length formula to compute the three side lengths ‖u‖, ‖v‖, ‖w‖.
(c) Use the dot product to compute the three angles of the triangle.

(a): Using the formula “head minus tail” gives

u = ~PQ = 〈1− 1,−1− 1, 1− (−1)〉 = 〈0,−2, 2〉,

v = ~QR = 〈−1− 1, 1− (−1), 1− 1〉 = 〈−2, 2, 0〉,

w = ~PR = 〈−1− 1, 1− 1, 1− (−1)〉 = 〈−2, 0, 2〉.

(b): Using the formula for length gives

‖u‖ =
√
u • u =

√
(0)2 + (−2)2 + (2)2 =

√
8,

‖v‖ =
√
v • v =

√
(−2)2 + (2)2 + (0)2 =

√
8,

‖w‖ =
√
w •w =

√
(−2)2 + (0)2 + (2)2 =

√
8.

We see from this that the side lengths are equal, i.e., the triangle is equilateral. This implies
that all three angles are 60◦, but we will check it anyway.

(c): Consider the picture



First we compute the dot products:

u • v = (0)(−2) + (−2)(2) + (2)(0) = −4,

u •w = (0)(−2) + (−2)(0) + (2)(2) = 4,

v •w = (−2)(−2) + (2)(0) + (0)(2) = 4.

Since α is the angle between u and w we have

cosα =
u •w
‖u‖‖w‖

=
4√
8
√

8
=

1

2
.

Since β is the angle between −u and v we have3

cosβ =
(−u) • v
‖ − u‖‖v‖

=
−(u • v)

‖u‖‖v‖
=

4√
8
√

8
=

1

2
.

Since γ is the angle between −v and −w we have

cos γ =
(−v) • (−w)

‖ − v‖‖ −w‖
=

v •w
‖v‖‖w‖

=
4√
8
√

8
=

1

2
.

In any case, the angle is

cos−1
(

1

2

)
= 60◦ or 300◦.

Remarks:

• Any two vectors placed tail to tail actually have two different angles between them,
which have the same cosine. By convention we choose the smaller of these two angles.

• If we add a fourth point S = (−1,−1,−1) then one can check that each of the triangles
PQR, PQS, PRS and QRS is equilateral. Hence the four points PQRS are the
vertices of a regular tetrahedron in space. Furthermore, the center of the tetrahedron
is at the origin O = (0, 0, 0). The angle between any two vertices, measured at the
origin, is called the tetrahedral angle θ. We can compute it as follows. Choose two
random vertices, say P and Q and consider the vectors with tail at the origin:

~OP = 〈1, 1,−1〉,
~OQ = 〈1,−1, 1〉.

3Recall: We measure the angle between vectors “tail to tail”.



The tetrahedral angle satisfies

cos θ =
~OP • ~OQ

‖ ~OP‖‖ ~OQ‖
=

−1√
3 ·
√

3
= −1

3
,

hence θ = cos−1(−1/3) ≈ 109.5◦. Here is a picture:

Problem 5. Some Vector Arithmetic. Let u and v be any two vectors, living in 527-
dimensional space. Use the rules of vector arithmetic (pages 112 and 147) to show that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2(u • v).

[Hint: Start with ‖u− v‖2 = (u− v) • (u− v). Now use FOIL and simplify the result.]

For any four vectors a,b, c,d we can use the distributive rule for the dot product to get

(a + b) • (c + d) = a • (c + d) + b • (c + d)

= a • b + a • d + b • c + b • d.

This is a dot product version of FOIL. In our particular case we have

‖u− v‖2 = (u− v) • (u− v)

= u • u− u • v − v • u + v • v.

Now we use the facts u • u = ‖u‖2, v • v = ‖v‖2 and u • v = v • u to get

‖u− v‖2 = u • u− u • v − v • u + v • v
= u • u + v • v − 2(u • v)

= ‖u‖2 + ‖v‖2 − 2(u • v).

We discussed in class how this algebraic identity, together with the geometric Law of Cosines,
leads to the theorem of the dot product:

u • v = ‖u‖‖v‖ cos θ.



Problem 6. Equations of Lines and Planes. The equation of the line in R2 that contains
the point (x0, y0) and is perpendicular to the vector n = 〈a, b〉 is

a(x− x0) + b(y − y0) = 0.

The equation of the plane in R3 that contains the point (x0, y0, z0) and is perpendicular to
the vector n = 〈a, b, c〉 is

a(x− x0) + b(y − y0) + c(z − z0) = 0.

(a) Find the equation of the line containing (2, 0) and perpendicular to 〈4, 3〉.
(b) Find the equation of the plane containing (1, 0, 0) and perpendicular to 〈1, 1, 1〉.

(a): Not much to do here. The equation is

4(x− 2) + 3(y − 0) = 0

4x+ 3y = 8.

(b): Again, not much to do. The equation is

1(x− 1) + 1(y − 0) + 1(z − 0) = 0

x+ y + z = 1.

Why did I make this so easy? I guess I wasn’t sure how far we would get in Thursday’s lecture.

Remark: This plane contains the points P,Q,R from Problem 4. I probably should have
rephrased Problem 5(b) to ask for the equation of the plane containing these points. In that
case, we could get a normal vector by taking the cross product of any two vectors in the plane,

say u = ~PQ and w = ~PR:

n = u×w = 〈−2, 2, 0〉 × 〈−2, 0, 2〉.
Using the mnemonic gives

n = det

 i j k
−2 2 0
−2 0 2


= det

(
2 0
0 2

)
i− det

(
−2 0
−2 2

)
j + det

(
−2 2
−2 0

)
k

= 4i + 4j + 4k

= 〈4, 4, 4〉.
Then picking any point in the plane, say P = (1, 1,−1), gives the equation

4(x− 1) + 4(y − 1) + 4(z + 1) = 0

4x+ 4y + 4z = 4

x+ y + z = 1.

Yeah, that would have been a better problem.


