Math 211 Summer 2022
Homework 1 Drew Armstrong

Problem 1. Lines and Circles. For each curve compute the velocity vector and the speed
at time ¢t. Also eliminate t to find an equation relating x and .

(a) (z,y) = (a + ut,b+ vt) where a,b, u,v are constants.
(b) (z,y) = (a+ rcost,b+ rsint) where a,b,r are constants.

(a): The velocity and speed are

(dz/dt,dy/dt) = (u,v) and +/(dz/dt)? + (dy/dt)? = \/u? + v2.

Note that these are both constant, i.e., they do not depend on tﬂ To eliminate ¢ we will
assume that u # 0 and v # 0, so that = a + ut implies t = (x — a)/u and y = b+ vt implies
t = (y — b)/v. Then equation these expressions for t gives

(z —a)/u=(y—0b)/v
v(ix —a) =u(y —b)
v(ix —a) —u(y —b) =0.

From our discussion in class we see that this line contains the point (a,b) and is perpendicular
to the vector (v, —u). Here is a picture:
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(b): The velocity and speed are
(dz/dt,dy/dt) = (—rsint,rcost)

and

V(dz/dt)? + (dy/dt)? = \/(—rsint)2 + (rcost)?

\/7"2 (sin®t + cos? )
Ve

|
=

IThus a parametrized line has constant velocity. Later we will see that any parametrized curve with constant
velocity is a line.



We assume that r is positive, so V2 = |r| = r. The speed is constant, but the velocity vector
is not constant. We can eliminate ¢ by using the trig identity sin?¢ + cos®t = 1 as follows:

(x —a)? + (y — b)? = (rcost)? + (rsint)? = r’(cos® t +sin®t) = 2.

This is the equation of a circle with radius r, centered at (a,b). Here is a picture:
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Problem 2. An Interesting Curve. Consider the parametrized curve
(m,y) = (t2 - 17t3 - t)
(a) Eliminate ¢ to find an equation relating x and y. [Hint: Note that y/z = ¢.]
(b) Find the points on the curve where the tangent line is vertical, horizontal, or has slope

+1 or —1. [Hint: The slope of the tangent at time t is dy/dz = (dy/dt)/(dz/dt).]
(¢) Use the information in part (b) to sketch the curve.

a): Substitute t = y/x into the equation x = t*> — 1 to get
Y g

z=(y/z)* -1
z=y%/z? — 1
2= 2 — g

mg +x2 = y2.

(c): Let’s write f(t) = (t> — 1,3 —t). The velocity is f'(t) = (dx/dt,dy/dt) = (2t,3t*> — 1), so
the slope of the tangent line at time t is
dy dx/dt 3t -1
de  dy/dt 2t
We note that this expression goes to oo as t — 0, so there is a vertical tangent at the point
f(0) = (—1,0). If the tangent line is horizontal (i.e., slope 0) then we have
3t —1
2t

0 = 3t—-1=0 = t==+1/3.




Hence the tangent line is horizontal at the points

f(=v/1/3) = (—0.67,0.4) and f(+/1/3) = (—0.67,—0.4).
If then tangent line has slope +1 then we have
32 —-1
2t
which happens at the points

F(1)=(0,0) and f(—1/3) ~ (—0.89,0.3)

1 = 3’—1=2t = t=1lor —1/3,

A similar computation shows that the tangent line has slope —1 at the points
f(=1)=1(0,0) and f(1/3)=~ (—0.89,—0.3).

Note that there are two different slopes at the point (0,0) because the curve passes through
this point twice, at times t = —1 and t = +1.

(c): Here is a picture:

O\ t=-1 444
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Problem 3. The Cycloid. The cycloid is an interesting curve whose arc length can be
computed by hand. It is parametrized by

(z,y) = (t —sint, 1 — cost).

(a) Sketch the curve between times ¢ = 0 and ¢t = 27. [Hint: The slope of the tangent line
at time ¢ is (dy/dt)/(dz/dt) = sint/(1 — cost), which goes to +o00 as t — 0 from the
right and goes to —oo as t — 27 from the left. You do not need to prove this.]

(b) Compute the arc length between t = 0 and ¢ = 27. [Hint: You will need the trig
identities sin?t + cos?t = 1 and 1 — cost = 2sin?(¢/2).]



(a): Let f(t) = (t —sint, 1 — cost), so the velocity is f'(t) = (dz/dt,dy/dt) = (1 — cost,sint)
and the slope of the tangent at time t is

dy dy/dt _ sint

dr  dx/dt 1—cost’
The curve starts at the point f(0) = (0,0), where the tangent is vertical because sint/(1 —
cost) — +o0o as t — 0 (from the right). The curve ends at f(27) = (27,0), where the tangent

is again vertical because sint/(1 — cost) — —oo as t — 27 (from the left)E| If the tangent is
horizontal and 0 < ¢t < 27 then

S L Gint=0 = t—n,
1—cost
which occurs at the point f(7) = (7,2). Here is a picture:
t=T
(1,2)
]
(0,0) ' (2w, ©)

(b): We can use the trig identities sin?¢ +cos?t = 1 and 1 — cost = 2sin?(¢/s) to simplify the
speed of the parametrization as follows:

V(dxz/dt)? + (dy/dt)? = \/(1 — cost)? + (sint)2
= \/1 — 2cost + cos? +sin? ¢
=+1-2cost+1
=2 —2cost
=+/2(1 — cost)
=1/2-2sin%(¢/2)
= 2sin(t/2),

which is non-negative because 0 < t < 27w. Then the arc length between t = 0 and ¢t = 27 is
the integral of the speed;

t=2m U=
/ 2sin(t/2) dt:/ 2sinu - 2du [u=1t/2,dt = 2du]
t=0 u=0
— 1 [~ coselT]

— 4 [=(-1) = (-1)

Remarks:

2You do not need to prove this. The limits can be computed with L’Hopital’s rule.



e [t is possible to eliminate ¢ as follows. First we rewrite y = 1 — cost as
cost=1—y
cos’t = 1—2y—|—y2
1—cos®t = 2y—y2
sin?t = y(2 — )
sint = \/y(2 —vy)

t=sin"! ( y(2 — y)) .

Then we substitute these expressions for ¢ and sint into the expression for x to get

x=1t—sint =sin " <\/y(2 — y)) — \/Z/(2 —v)

What a mess. Clearly it is better to express the cycloid in terms of a parametrization.

e The cycloid is the answer to several interesting problems in physics. For example,
suppose you have a pebble stuck in the surface of your car tire. As the car moves
the pebble will follow a cycloidal path. Suppose that the tire has radius 1 unit, so
the circumference is 27 units. As your travels a straight line distance of 27 units, the
pebble will travel an arc length of 8 units.

Problem 4. A Triangle in Space. Consider the following points in R3:
pP=(1,1,-1), Q=(1,-1,1), R=(-1,1,1).

(a) Find the coordinates of the three side vectors u = P_Q, v = Q_R, w = PR.
(b) Use the length formula to compute the three side lengths ||u]|, [|v]], ||w]|.
(c) Use the dot product to compute the three angles of the triangle.

(a): Using the formula “head minus tail” gives
u=PrPQ=(1-1,-1-1,1-(-1)) =(0,-2,2),
v=QR=(-1-1,1—(-1),1-1) =(-2,2,0),
w=PR=(-1-1,1-1,1—-(-1)) = (-2,0,2).

(b): Using the formula for length gives

Huu:ﬁu-uw«» < >+<2>2:¢é,
IVl = vvev = (22 + 22+ (0 = V&,
||w||=¢m:¢—2 +o2+<2>2=¢§.

We see from this that the side lengths are equal, i.e., the triangle is equilateral. This implies
that all three angles are 60°, but we will check it anyway.

(c): Consider the picture



First we compute the dot products:

wev = (0)(~2) + (~2)(2) + (2)(0) = —4,
wew = (0)(~2) + (~2)(0) + (2)(2) = 4,
vew = (=2)(=2)+ (2)(0) + (0)(2) = 4.

Since « is the angle between u and w we have
uew 4 1
[allflw]  VBv8 2
Since [ is the angle between —u and v we haveﬂ
— — 4 1
cos f = (—u)ev (uov)_

I=ullivll vl v8YE 2

Since + is the angle between —v and —w we have

CoOs&x =

cos — (—v)e(—w) vew 4 1

I=vlll =wl — [villwll — v8v8 2

In any case, the angle is
cos ™! (;) = 60° or 300°.

Remarks:

e Any two vectors placed tail to tail actually have two different angles between them,
which have the same cosine. By convention we choose the smaller of these two angles.

e If we add a fourth point S = (=1, —1, —1) then one can check that each of the triangles
PQR, PQS, PRS and QRS is equilateral. Hence the four points PQRS are the
vertices of a regular tetrahedron in space. Furthermore, the center of the tetrahedron
is at the origin O = (0,0,0). The angle between any two vertices, measured at the
origin, is called the tetrahedral angle 8. We can compute it as follows. Choose two
random vertices, say P and () and consider the vectors with tail at the origin:

OP =(1,1,-1),
0Q =(1,-1,1).

3Recall: We measure the angle between vectors “tail to tail”.



The tetrahedral angle satisfies
OPe0OQ -1 1
loPlloQl  v3-v3 3

hence § = cos™1(—1/3) ~ 109.5°. Here is a picture:

O = (0,6,0)
[ R=C010
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Problem 5. Some Vector Arithmetic. Let u and v be any two vectors, living in 527-
dimensional space. Use the rules of vector arithmetic (pages 112 and 147) to show that

lu=v? = full* + [[v]* — 2(uev).

[Hint: Start with ||[u — v||?> = (u —v) @ (u — v). Now use FOIL and simplify the result.]

For any four vectors a, b, c,d we can use the distributive rule for the dot product to get

(a+b)e(c+d)=ae(c+d)+be(c+d)
—aeb+aed+bec+bed.

This is a dot product version of FOIL. In our particular case we have
[lu—v[*=(u—-v)e(u-v)
—ueu—uev-—-veut+vev.
Now we use the facts ueu = ||uf?, vev =|v||? and uev =veu to get

lu—v|*?=ueu—-uev—-—veu-+vev
=ueu+vev—2uev)
= [[ul? + [[v]* = 2(u e v).

We discussed in class how this algebraic identity, together with the geometric Law of Cosines,
leads to the theorem of the dot product:

uev = |[ufl||v] cosb.



Problem 6. Equations of Lines and Planes. The equation of the line in R? that contains
the point (g, y0) and is perpendicular to the vector n = (a, b) is

a(z — x0) + b(y — yo) = 0.
The equation of the plane in R? that contains the point (zg, o, 20) and is perpendicular to
the vector n = (a, b, c) is

a(x —xg) + by —yo) + c(z — zp) = 0.
(

(a) Find the equation of the line containing (2,0) and perpendicular to (4, 3).
(b) Find the equation of the plane containing (1,0,0) and perpendicular to (1,1, 1).

(a): Not much to do here. The equation is

4(x—2)+3(y—0)=0
4z + 3y = 8.

(b): Again, not much to do. The equation is
(lz—1)+1(y—0)+1(z—0)=0
z+y+z=1
Why did I make this so easy? I guess I wasn’t sure how far we would get in Thursday’s lecture.
Remark: This plane contains the points P,Q, R from Problem 4. I probably should have
rephrased Problem 5(b) to ask for the equation of the plane containing these points. In that

case, we could get a normal vector by taking the cross product of any two vectors in the plane,
say u = P@Q and w = PR:

n=uxw=(—2,20) x (-2,0,2).

Using the mnemonic gives

n=det | —

= det <(2) g) i— det (_3 g) j+ det (_3 (2)> k
=4i+4j+ 4k
= (4,4,4).
Then picking any point in the plane, say P = (1,1, —1), gives the equation
4r—1)+4(y—1)+4(z+1)=0
dr+4y+4z=4
z+y+z=1.
Yeah, that would have been a better problem.



