PRACTICE PROBLEMS FOR EXAM 1

1. Let $\mathbf{v} = 2\mathbf{i} + 2\mathbf{k}$ and $\mathbf{w} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$. (a) Find $|\mathbf{v}|$. (b) Find the unit vector with the same direction as \mathbf{v} . (c) Find $\mathbf{v} \cdot \mathbf{w}$. (d) State a formula for the angle between two vectors. (e) Find the angle between \mathbf{v} and \mathbf{w} . (f) Find $\mathbf{v} + \mathbf{w}$. (g) Find the component of \mathbf{w} in the direction of \mathbf{v} . (h) Write \mathbf{w} as the sum of two vectors, one of them parallel to \mathbf{v} , the other perpendicular to \mathbf{v} . (i) Find $\mathbf{v} \times \mathbf{w}$.

2. True or false ? (a) $\mathbf{u} \times \mathbf{v} = 0$ if and only if \mathbf{u} and \mathbf{v} are perpendicular. (b) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \times (\mathbf{v} \cdot \mathbf{w})$ for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in space. (c) If $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$ and $\mathbf{u} \neq 0$ then $\mathbf{v} = \mathbf{w}$.

3. (a) Check that the two lines with the parametric equations $\mathbf{r}_1(t) = \langle 0, 2, -3 \rangle + t \langle 1, 0, -1 \rangle$ and $\mathbf{r}_2(s) = \langle -2, 3, -6 \rangle + s \langle 3, -1, 2 \rangle$ intersect at the point P = (1, 2, -4). (b) What is the acute angle between the two lines? You can leave your answer in terms of arccos.

4. (a) Find a nonzero vector perpendicular to the vectors u = i - j + k and v = 2j - 3k.
(b) Find the area of the parallelogram spanned by u and v.

5. Find the equation of the plane passing through the point (0, 1, -2) and containing the line $\mathbf{r}(t) = \langle 0, 2, -3 \rangle + t \langle 1, 0, -1 \rangle$.

6. Consider the parametric line $\mathbf{r}(t) = \langle -2, 3, -6 \rangle + t \langle 3, -1, -2 \rangle$ and the plane given by the equation 2x - y + 3z = 5. (a) Show that the line intersects the plane at precisely one point and find its coordinates. (b) Find the acute angle that the line makes with a vector normal to the plane.

7. Determine if there exists a plane that contains all four points P(3,1,2), Q(6,-1,6), R(1,4,7), and S(2,1,5).

8. Find symmetric equations for the line of intersection of the planes x + y - z = 2 and 3x - 4y + 5z = 6.

9. The velocity of a particle moving in space is given by

$$\frac{d\mathbf{r}}{dt} = -\sin t \cdot \mathbf{i} + \cos t \cdot \mathbf{j} + 3\mathbf{k}.$$

(a) Find the position vector $\mathbf{r}(t)$ of the particle if $\mathbf{r}(0) = \mathbf{i} + 3\mathbf{k}$. (b) Find the unit tangent vector to the trajectory of the particle when $t = \pi$. (c) Find particle's acceleration when $t = \pi$. (d) Find the distance traveled by the particle along the curve $\mathbf{r}(t)$ from t = 0 to $t = \pi$.

10. The surface with equation $z + \cos(xy) = x^2 + y^2$ can be described both as a level surface of a function f and as the graph of a function g. Give explicit formulas for f and g.

11. (a) Let $f(x, y, z) = \sin(xy + z)$. Find all first and second order partial derivatives of f. (b) Evaluate

$$\frac{\partial^{100}}{\partial x^{95} \ \partial y^2 \ \partial x^3} (y e^x x + \cos(x)) \,.$$

12. Find the equation of the tangent plane to the graph $z = -x^2 + 4y^2 + 1$ at the point (2, 1, 1).

13. Let f(x, y) be a differentiable function such that f(1, 1) = 3, $f_x(1, 1) = 2$, and $f_y(1, 1) = -1$. From the available information, what is the best estimate you can give of f(1.1, 0.9)?

14. The radius of a right circular cone is measured at 120 in with a possible error of 1.8 in, while its height measured at 140 in with a possible error of 2.5 in. Estimate the maximal possible error if these measurements are used to compute the volume of this cone.

SOLUTIONS

1. (a) $2\sqrt{2}$; (b) $\left\langle \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right\rangle$; (c) 6; (e) $\frac{\pi}{6}$; (f) $\langle 4, 1, 3 \rangle$; (g) $\frac{3}{\sqrt{2}}$; (h) $\langle 1.5, 0, 1.5 \rangle + \langle 0.5, 1, -0.5 \rangle$; (i) $\langle -2, 2, 2 \rangle$. 2. All three are false. 3. (b) $\arccos\left(\frac{1}{2\sqrt{7}}\right)$. 4. (a) $\langle 1, 3, 2 \rangle$; (b) $\sqrt{14}$. 5. x + y + z + 1 = 0. 6. (a) P(88, -27, -66); (b) $\arccos\left(\frac{1}{14}\right)$. 7. There is no such plane. 8. x - 2 = y/(-8) = z/(-7). 9. (a) $\langle \cos t, \sin t, 3 + 3t \rangle$; (b) $\mathbf{T} = (-\mathbf{j} + 3\mathbf{k})/\sqrt{10}$; (c) $\mathbf{r}'' = \mathbf{i}$; (d) $\sqrt{10}\pi$. 10. $f(x, y, z) = x^2 + y^2 - \cos(xy) - z$, $g(x, y) = x^2 + y^2 - \cos(xy)$. 11. (a) $f_x = y \cos(xy + z)$, $f_y = x \cos(xy + z)$, $f_z = \cos(xy + z)$; (b) 0. 12. z = 1 - 4x + 8y. 13. $f(1.1, 0.9) \approx f(1, 1) + 2 \cdot 0.1 + (-1) \cdot (-0.1) = 3.3$. 14. $V(r, h) = \frac{1}{3}\pi r^2 h$, $dV = V_r(120, 140) dr + V_h(120, 140) dh = 32160 \pi$.