PRACTICE PROBLEMS FOR EXAM 2

- **1.** Let f(x, y) have continuous second partial derivatives, and let x = st and $y = e^{st}$.
- (a) Find $\partial x/\partial t$ and $\partial y/\partial t$.
- (b) Find $\partial f/\partial t$ in terms of $\partial f/\partial x$, $\partial f/\partial y$, s and t.
- (c) Find $\partial^2 f/\partial t^2$ in terms of $\partial^2 f/\partial x^2$, $\partial^2 f/\partial x \partial y$, $\partial^2 f/\partial y^2$, $\partial f/\partial x$, $\partial f/\partial y$, s and t.

2. Consider the function $f(x, y) = 3x^2 - xy + y^3$.

(a) Find the rate of change of f at (1, 2) in the direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$.

(b) In what direction (unit vector) does f decrease at (1,2) at the maximum rate ? What is this maximum rate of change?

(c) In what directions is the rate of change of f at (1, 2) equal to zero? Your answer should be a pair of opposite unit vectors.

3. Suppose the gradient $\nabla f(2,4)$ of a function f(x,y) has length equal to 5. Is there a direction **u** such that the directional derivative $D_{\mathbf{u}}f$ at the point (2,4) is 7? Explain your answer.

4. Find the tangent plane to the ellipsoid $x^2 + 4y^2 = 169 - 9z^2$ at the point P = (3, 2, 4).

5. Find the points on the surface (ellipsoid) $x^2 + 2y^2 + 4z^2 + xy + 3yz = 1$ where the tangent plane is parallel to the xz plane.

6. Find all the critical points of $f(x,y) = x^2 + y^2/2 + x^2y$ and apply the second derivative test to each of them.

7. Find the absolute maximum and minimum values of the function $f(x, y) = (x - 1)^2 + (y - 1)^2$ in the rectangular domain $D = \{(x, y) : 0 \le x \le 1, 0 \le y \le 2\}$. Justify your answer.

8. Find the maximum of f(x, y) = xy restricted to the curve $(x + 1)^2 + y^2 = 1$. Give both the coordinates of the point and the value of f.

9. Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is a constant C.

10. Compute $\iint_D (3x+1) dxdy$ where D is the region in the first quadrant bounded by the parabolas $y = x^2$ and $y = (x-1)^2$ and the y-axis.

11. Change the order of integration in the following iterated integral:

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} f(x,y) \, dx \, dy.$$

12. (a) Find the area of the region enclosed by the cardioid given in polar coordinates by $r = 1 + \cos(\theta)$. (b) Use polar coordinates to evaluate

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} \, dx \, dy$$

SOLUTIONS

- 1. (a) $x_t = s, y_t = s e^{st}$; (b) $f_t = s f_x + s e^{st} f_y$; (c) $f_{tt} = s^2 e^{st} f_y + s^2 f_{xx} + 2s^2 e^{st} f_{xy} + s^2 e^{2st} f_{yy}$.
- **2.** (a) $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}, \quad (D_{\mathbf{u}}f)(1,2) = (\nabla f)(1,2) \cdot \mathbf{u} = 56/5.$

(b)
$$-\frac{\nabla f}{|\nabla f|}(1,2) = \left(-\frac{4}{\sqrt{137}}, -\frac{11}{\sqrt{137}}\right).$$
 (c) $\left(\frac{11}{\sqrt{137}}, -\frac{4}{\sqrt{137}}\right), \left(-\frac{11}{\sqrt{137}}, \frac{4}{\sqrt{137}}\right).$

3. (a) No, because $|(D_{\mathbf{u}}f)(2,4)| = |(\nabla f)(2,4)||\mathbf{u}|\cos\theta$ where θ is the angle between \mathbf{u} and $(\nabla f)(2,4)$. If $|(D_{\mathbf{u}}f)(2,4)| = 7$ then $7 = 5\cos\theta$ which is impossible because $\cos\theta \leq 1$.

4.
$$3x + 8y + 36z = 169.$$
 5. The points where $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial z} = 0$, i.e. $\left(-\frac{2}{\sqrt{19}}, \frac{4}{\sqrt{19}}, -\frac{3}{2\sqrt{19}}\right)$ and $\left(\frac{2}{\sqrt{19}}, -\frac{4}{\sqrt{19}}, \frac{3}{2\sqrt{19}}\right).$

6. (0,0) is a local minimum, (1,-1) and (-1,-1) are saddles.

- 7. Minimum 0, maximum 2. 8. Maximum $f(-3/2, -\sqrt{3}/2) = 3\sqrt{3}/4$.
- **9.** *C*/12, *C*/12, *C*/12. **10.** 3/8.
- **11.** $\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x,y) \, dy \, dx.$ **12.** (a) $3\pi/2$. (b) $\frac{\pi}{8} \ln 5$.

More practice problems

1. Let f(x, y, z) = x + 2y + z, and R the solid $x^2 + y^2 + z^2 \le 4$, $\sqrt{3(x^2 + y^2)} \le z$. Set up an integral to compute $\iiint_R f(x, y, z) dxdydz$ (a) using rectangular coordinates (x, y, z), (b) using cylindrical coordinates (r, θ, z) , and (c) using spherical coordinates (ρ, θ, φ) (do not evaluate the integrals).

2. Find the volume of the region in space bounded by the paraboloid $x = 1 - y^2 - z^2$ and the plane x = 0.

3. The solid *E* in the first octant is obtained by removing the cylinder $x^2 + y^2 = 1$ from the sphere $x^2 + y^2 + z^2 = 4$. Set up a triple integral in cylindrical coordinates to compute the total mass of *E* if its density is given by $\rho(x, y, z) = z^2 + \sqrt{x^2 + y^2}$. Do not evaluate the integral.

4. (a) Find the volume of one of the wedges cut from the cylinder $x^2 + y^2 = a^2$ by the planes z = 0 and z = mx, m > 0. (b) Use spherical coordinates to evaluate

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} (x^2 + y^2 + z^2)^2 \, dz \, dy \, dx \, dx$$

SOLUTIONS

1.

(a)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{3(x^2+y^2)}}^{\sqrt{4-x^2-y^2}} (x+2y+z) dz dy dx,$$

(b)
$$\int_{0}^{2\pi} \int_{0}^{1} \int_{\sqrt{3}r}^{\sqrt{4-r^2}} r(r\cos\theta+2r\sin\theta+z) dz dr d\theta,$$

(c)
$$\int_{0}^{2\pi} \int_{0}^{\pi/6} \int_{0}^{2} \rho^{3}(\sin\varphi\cos\theta+2\sin\varphi\sin\theta+\cos\varphi)\sin\varphi d\rho d\varphi d\theta.$$

2. $\pi/2$.

3.

$$\int_0^{\pi/2} \int_1^2 \int_0^{\sqrt{4-r^2}} r(z^2+r) \, dz dr d\theta.$$

4. (a) $2ma^3/3$. (b) $\pi/14$.