

FIGURE 3

FIGURE 4
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

FIGURE 5
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

FIGURE 6
$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

An ellipse has a simple equation if we place the foci on the x-axis at the points $(-c, 0)$ and $(c, 0)$ as in Figure 3 so that the origin is halfway between the foci. If the sum of the distances from a point on the ellipse to the foci is $2 a$, then the points ($a, 0$) and $(-a, 0)$ where the ellipse meets the x-axis are called the vertices. The y-intercepts are $\pm b$, where $b^{2}=a^{2}-c^{2}$. (See Figure 4.)

The ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad a \geqslant b>0
$$

has foci $(\pm c, 0)$, where $c^{2}=a^{2}-b^{2}$, and vertices $(\pm a, 0)$.

If the foci of an ellipse are located on the y-axis at $(0, \pm c)$, then we can find its equation by interchanging x and y in 1 .

A hyperbola is the set of all points in a plane the difference of whose distances from two fixed points F_{1} and F_{2} (the foci) is a constant. Notice that the definition of a hyperbola is similar to that of an ellipse; the only change is that the sum of distances has become a difference of distances. If the foci are on the x-axis at $(\pm c, 0)$ and the difference of distances is $\pm 2 a$, then the equation of the hyperbola is $\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1$, where $b^{2}=c^{2}-a^{2}$. The x-intercepts are $\pm a$ and the points $(a, 0)$ and $(-a, 0)$ are the vertices of the hyperbola. There is no y-intercept and the hyperbola consists of two parts, called its branches. (See Figure 5.)

When we draw a hyperbola it is useful to first draw its asymptotes, which are the dashed lines $y=(b / a) x$ and $y=-(b / a) x$ shown in Figure 5. Both branches of the hyperbola approach the asymptotes; that is, they come arbitrarily close to the asymptotes.

The hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

has foci $(\pm c, 0)$, where $c^{2}=a^{2}+b^{2}$, vertices $(\pm a, 0)$, and asymptotes $y= \pm(b / a) x$.

If the foci of a hyperbola are on the y-axis, then by reversing the roles of x and y we get the graph shown in Figure 6.

We have given the standard equations of the conic sections, but any of them can be shifted by replacing x by $x-h$ and y by $y-k$. For instance, an ellipse with center (h, k) has an equation of the form

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

CONICS IN POLAR COORDINATES

In the following theorem we show how all three types of conic sections can be characterized in terms of a focus and directrix.

