1. Let $\mathbf{u}=\langle-1,2,0\rangle, \mathbf{v}=\langle 2,0,2\rangle$ and $\mathbf{w}=\langle 0,3,1\rangle$
(a) Compute the area of the parallelogram spanned by \mathbf{u} and \mathbf{v}.

Solution: We have Area $=\|\mathbf{u} \times \mathbf{v}\|=\|\langle 4,2,-4\rangle\|=\sqrt{36}=6$.
(b) Compute $\cos (\theta)$ where θ is the angle between \mathbf{v} and \mathbf{w}.

Solution:

$$
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|v\|\|w\|}=\frac{2}{\sqrt{8} \sqrt{10}}=\frac{\sqrt{5}}{10}
$$

(c) Give a parametric equation for the line perpendicular to \mathbf{u} and \mathbf{v} and passing through the point $(-1,2,3)$.

Solution: Using the solution to part (a), we have that the line has direction vector $\langle 4,2,-4\rangle$ or $\langle 2,1,-2\rangle$. So a vector parameterization is

$$
\mathbf{r}(t)=\langle-1,2,3\rangle+t\langle 2,1,-2\rangle
$$

2. Consider the curve \mathcal{C} given by the parametrization

$$
\mathbf{r}(t)=\left\langle 2 t, t^{2}, t\right\rangle \quad \text { for } 0 \leq t \leq 2
$$

(a) Find the unit tangent vector $\mathbf{T}(t)$ of $\mathbf{r}(t)$.

Solution: Observe $\mathbf{r}^{\prime}(t)=\langle 2,2 t, 1\rangle$. so that $\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{4 t^{2}+5}$ and

$$
\mathbf{T}(t)=\frac{1}{\sqrt{4 t^{2}+5}}\langle 2,2 t, 1\rangle
$$

3. Calculate the following quantities if they exist. Otherwise, explain why they do not exist. Justify either response.
(a) For

$$
f(x, y, z)=e^{\sqrt{x^{2}+y^{2}}}+e^{\sqrt{z^{2}+y^{2}}}+2 x y
$$

compute

$$
f_{x z}(x, y, z)
$$

Solution: The first term has z partial equal to zero and the second has x partial equal to zero, so the answer is identically zero.
(b) For $f(x, y, z)=y \sin (x)-4 e^{z}$ find a unit vector pointing in the direction where f increases the fastest, starting at $(0,3,0)$.

Solution: The gradient of f is $\nabla f=\left\langle y \cos (x), \sin (x),-4 e^{z}\right\rangle$ which, at $(0,3,0)$ evaluates to $\langle 3,0,-4\rangle$. This points in the direction of greatest increase. To find the unit vector in that direction, we divide by the norm $=\sqrt{9+16}=5$ to obtain

$$
\left\langle\frac{3}{5}, 0,-\frac{4}{5}\right\rangle
$$

(c) Find the equation for the tangent plane to the surface

$$
z=x^{2}-y^{2}
$$

at the point $(2,-1,3)$.

Solution: This is a level surface for $0=x^{2}-y^{2}-z=f(x, y, z)$ and the gradient of f is $\nabla f=\langle 2 x,-2 y,-1\rangle$ which evaluates to $\langle 4,2,-1\rangle$ at $(2,-1,3)$. As this is a normal vector to the tangent plane, we have that the equation is $4 x+2 y-z=4 \cdot 2+2 \cdot(-1)+(-1) \cdot 3=3$.
4. Let

$$
f(x, y)=x^{2}+\cos y
$$

and

$$
\mathcal{D}=[-1,1] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

(a) Find the critical points of $f(x, y)$ in the interior of \mathcal{D}.

Solution: Solving $\nabla f=\langle 2 x,-\sin y\rangle=\langle 0,0\rangle$ gives $x=0$ and $y=0$ as the only critical point of f.
(b) Describe the local behavior of $f(x, y)$ at the critical points found in part (a).

Solution: The Hessian of f has $2,-1$ along the diagonal and zeros off the diagonal. Thus $(0,0)$ is a saddle point.
(c) Find the global maximum and minimum values of $f(x, y)=x^{2}+\cos y$ on \mathcal{D}.

Solution: Examining the horizontal sides of \mathcal{D} where $y= \pm \pi / 2$, we obtain $\cos (y)=0$ and $f(x, y)$ is the function x^{2} on $[-1,1]$. This has a minimum value of 0 and maximum of 1 . On the vertical sides we have $f(x, y)=\cos (y)+1$ on $[-\pi / 2, \pi / 2]$ which has a minimum of 1 and maximum of 2 . Thus the global min (max) are 0 (2) respectively.
5. Let $\mathcal{W}=[0, \pi] \times[-1,1] \times[2,3]$. Evaluate the triple integral

$$
\iiint_{\mathcal{W}}\left(3 y^{2}+z\right) \sin x \mathrm{~d} V
$$

Solution: This is a straightforward computation using Fubini and product of integrals

$$
\begin{aligned}
\iiint_{\mathcal{W}}\left(3 y^{2}+z\right) \sin x \mathrm{~d} V & =\left(\int_{0}^{\pi} \sin x \mathrm{~d} x\right)\left(\int_{-1}^{1} \int_{2}^{3} 3 y^{2}+z \mathrm{~d} z \mathrm{~d} y\right) \\
& =2 \int_{-1}^{1} 3 z y^{2}+\left.\frac{z^{2}}{2}\right|_{2} ^{3} \mathrm{~d} y \\
& =2 \int_{-1}^{1} 3 y^{2}+\frac{5}{2} \mathrm{~d} y \\
& =\left.2\left(y^{3}+\frac{5}{2} y\right)\right|_{-1} ^{1} \\
& =14
\end{aligned}
$$

6. Evaluate the following integrals.
(a) Let \mathcal{D} be the upper half-disc

$$
\mathcal{D}: x^{2}+y^{2} \leq 4, y \geq 0
$$

in the plane. Evaluate

$$
\iint_{\mathcal{D}} 2 e^{x^{2}+y^{2}} \mathrm{~d} A
$$

Solution: Change to polar coordinates to obtain

$$
\begin{aligned}
\iint_{\mathcal{D}} 2 e^{x^{2}+y^{2}} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{\pi} \int_{0}^{2} 2 r e^{r^{2}} \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\pi} e^{4}-1 \mathrm{~d} \theta \\
& =\pi e^{4}-\pi
\end{aligned}
$$

(b) Let \mathcal{D} be the region $0 \leq x \leq 1-y^{2}$. Evaluate

$$
\iint_{\mathcal{D}} 1+y^{2} \mathrm{~d} A
$$

Solution:

$$
\begin{aligned}
\iint_{\mathcal{D}} 1+y^{2} \mathrm{~d} A & =\int_{-1}^{1} \int_{0}^{1-y^{2}} 1+y^{2} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{-1}^{1}\left(1+y^{2}\right)\left(1-y^{2}\right) \mathrm{d} y \\
& =\int_{-1}^{1} 1-y^{4} \mathrm{~d} y \\
& =y-\left.\frac{y^{5}}{5}\right|_{-1} ^{1}=2-\frac{2}{5}=\frac{8}{5}
\end{aligned}
$$

(c) Let \mathcal{E} be the half ball $x^{2}+y^{2}+z^{2} \leq 1$ with $0 \leq z$ and evaluate

$$
\iiint_{\mathcal{W}} z^{2} \mathrm{~d} V
$$

Solution:

$$
\begin{aligned}
\iiint_{\mathcal{W}} z^{2} \mathrm{~d} V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{2} \cos ^{2}(\phi) \rho^{2} \sin (\phi) \mathrm{d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \\
& =2 \pi\left(\int_{0}^{\pi / 2} \cos ^{2}(\phi) \sin (\phi) \mathrm{d} \phi\right)\left(\int_{0}^{1} \rho^{4} \mathrm{~d} \rho\right) \\
& =\frac{2 \pi}{5}\left(-\left.\frac{\cos ^{3}(\phi)}{3}\right|_{0} ^{\pi / 2}\right) \\
& =\frac{2 \pi}{15}
\end{aligned}
$$

7. Let $\mathbf{u}=\langle 1,1,0\rangle, \mathbf{v}=\langle 1,0,1\rangle$ and $\mathbf{w}=\langle 0,1,1\rangle$.
(a) Compute the volume of the parallelepiped spanned by \mathbf{u}, \mathbf{v} and \mathbf{w}.

Solution: We have Volume $=|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$ and $\mathbf{u} \times \mathbf{v}=\langle 1,-1,-1\rangle$ so that Volume $=2$.
(b) Compute the angle θ between \mathbf{v} and \mathbf{w}.

Solution:

$$
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|v\|\|w\|}=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2}
$$

So that $\theta=\pi / 3$
(c) Give the equation for the plane parallel to \mathbf{u} and \mathbf{v} and passing through the origin.

Solution: Using the solution to part (a), we have that $\mathbf{u} \times \mathbf{v}=\langle 1,-1,-1\rangle$ is a normal vector for the plane so that

$$
x-y-z=0
$$

is the equation.
8. Consider the curve \mathcal{C} given by the parametrization

$$
\mathbf{r}(t)=\left\langle\sin (t), \cos (t), e^{t}\right\rangle \quad \text { for } 0 \leq t \leq \pi
$$

(a) Find the speed of $\mathbf{r}(t)$ as a function of t.

$$
\begin{aligned}
& \text { Solution: The speed is }\left\|\mathbf{r}^{\prime}(t)\right\| \\
& \sqrt{\cos ^{2} t+\sin ^{2} t+e^{2 t}}=\sqrt{1+e^{2 t}} \text {. }
\end{aligned}
$$

9. Calculate the following quantities if they exist. Otherwise, explain why they do not exist. Justify either response.
(a) For

$$
f(x, y, z)=\cos \left(z^{2}-y^{2}\right)+y \sin (x)
$$

compute

$$
f_{x y}(x, y, z)
$$

Solution: The first term has x partial equal to zero and the second has x partial equal to $y \cos (x)$. Taking the y partial then gives $\cos (x)$.
(b) For $f(x, y, z)=x+y^{2}+z^{3}$ find the change in $f(x, y, z)$ as one moves in the direction of the unit vector $\mathbf{u}=\frac{\sqrt{3}}{3}\langle 1,1,1\rangle$ starting at $(2,0,-1)$.

Solution: This is the directional derivative $D_{\mathbf{u}} f(2,0,-1)$. To compute, we evaluate the gradient $\nabla f=\left\langle 1,2 y, 3 z^{2}\right\rangle$ at $(2,0,-1)$ to get $\nabla f(2,0,-1)=$ $\langle 1,0,3\rangle$. We then take the dot product to get

$$
D_{\mathbf{u}} f(2,0,-1)=\nabla f(2,0,-1) \cdot \mathbf{u}=\frac{4 \sqrt{3}}{3}
$$

(c) Find the equation for the tangent plane to the surface

$$
z=x y
$$

at the point $(1,2,2)$.

Solution: We compute $f_{x}(1,2)=2, f_{y}(1,2)=1$ and $f(1,2)=2$ so that the linearization is $L(x, y)=2+2(x-1)+(y-2)=2 x+y-2$ giving the equation

$$
z=2 x+y-2
$$

10. Let

$$
f(x, y)=x^{3}-12 x+y^{2}
$$

and \mathcal{D} be the square $[-3,3] \times[-3,3]$.
(a) Find the critical points of $f(x, y)$ in the interior of \mathcal{D}.

Solution: Solving $\nabla f=\left\langle 3 x^{2}-12,2 y\right\rangle=\langle 0,0\rangle$ gives $x= \pm 2$ and $y=0$. Thus $(2,0)$ and $(-2,0)$ are the only critical points of f.
(b) Describe the local behavior of $f(x, y)$ at the critical points found in part (a).

Solution: We have that $f_{x x}=6 x, f_{y y}=2$ and $f_{x y}=0$. So at $(2,0)$, the discriminant is $D=24$ and $f_{x x}>0$ so that $(2,0)$ is a local min while at $(-2,0)$, $D=-24$ so that there is a saddle point.
(c) Find the maximum value of f on \mathcal{D}.

Solution: Since there is only a local min and saddle in the interior of \mathcal{D}, the maximum must occur on the boundary. For $y= \pm 3$, we have $g(x)=f(x, \pm 3)=$ $x^{3}-12 x+9$ and the critical points are again solutions to $3 x^{2}-12=0$ which give $2,-2$. Checking the values at these points we have $f(2, \pm 3)=-7$ and $f(-2, \pm 3)=25$. The values at the endpoints are $f(-3, \pm 3)=18$ and $f(3, \pm 3)=$ 0.

For $x=3$, we have $g(x)=y^{2}-9$ which clearly has a minimum of -9 at 0 and maxima at the endpoints (already computed above). Similarly, at $x=-3$, we have $y^{2}+9$ which again has a minimum of 9 at 0 and maxima at endpoints (already computed). Thus the global maximum is 25 .
11. Let $\mathcal{W}=[0,1] \times[-1,0] \times[0,2]$. Evaluate the triple integral

$$
\iiint_{\mathcal{W}}(2 x+z) e^{y} \mathrm{~d} V
$$

Solution: This is a straightforward computation using Fubini and product of integrals

$$
\begin{aligned}
\iiint_{\mathcal{W}}(2 x+z) e^{y} \mathrm{~d} V & =\left(\int_{-1}^{0} e^{y} \mathrm{~d} y\right)\left(\int_{0}^{2} \int_{0}^{1} 2 x+z \mathrm{~d} x \mathrm{~d} z\right) \\
& =(1-1 / e) \int_{0}^{2} x^{2}+\left.x z\right|_{0} ^{1} \mathrm{~d} z \\
& =(1-1 / e) \int_{0}^{2} 1+z \mathrm{~d} z \\
& =(1-1 / e)\left(z+z^{2} /\left.2\right|_{0} ^{2}\right) \\
& =4(1-1 / e)
\end{aligned}
$$

12. Evaluate the following integrals.
(a) Let \mathcal{D} be the region $x^{2}+y^{2} \leq 4,0 \leq y, x \leq 0$. Evaluate

$$
\iint_{\mathcal{D}} 3 x \mathrm{~d} A
$$

Solution: Switching to polar coordinates, we have that \mathcal{D} is the region $\pi / 2 \leq$ $\theta \leq \pi$ and $0 \leq r \leq 2$.

$$
\begin{aligned}
\iint_{\mathcal{D}} 3 x \mathrm{~d} A & =\int_{\pi / 2}^{\pi} \int_{0}^{2} 3 r^{2} \cos \theta \mathrm{~d} r \mathrm{~d} \theta \\
& =\left.\int_{\pi / 2}^{\pi} r^{3}\right|_{0} ^{2} \cos \theta \mathrm{~d} \theta \\
& =8 \int_{\pi / 2}^{\pi} \cos \theta \mathrm{d} \theta \\
& =\left.8 \sin \theta\right|_{\pi / 2} ^{\pi}=-8
\end{aligned}
$$

(b) Let \mathcal{D} be region between the lines $y=-x, y=-1$ and $x=-1$. Compute the integral

$$
\iint_{\mathcal{D}} 2 y \mathrm{~d} A
$$

Solution:

$$
\begin{aligned}
\iint_{\mathcal{D}} 2 y \mathrm{~d} A & =\int_{-1}^{1} \int_{-1}^{-x} 2 y \mathrm{~d} y \mathrm{~d} x \\
& =\left.\int_{-1}^{1} y^{2}\right|_{-1} ^{-x} \mathrm{~d} x \\
& =\int_{-1}^{1} \int_{-1}^{-x} x^{2}-1 \mathrm{~d} x \\
& =x^{3} / 3-\left.x\right|_{-1} ^{1} \\
& =-4 / 3
\end{aligned}
$$

