There are 6 pages, each worth 6 points, for a total of 36 points. This is a closed book test. No electronic devices are allowed. Show your work for full credit.

Problem 1. Let θ be the angle between the vectors $\mathbf{u}=\langle 3,1\rangle$ and $\mathbf{v}=\langle 1,2\rangle$.
(a) Compute $\cos \theta$.

$$
\cos \theta=\frac{\mathbf{u} \bullet \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\frac{3 \cdot 1+1 \cdot 2}{\sqrt{3^{2}+1^{2}} \sqrt{1^{1}+2^{2}}}=\frac{5}{\sqrt{10} \sqrt{5}}=\frac{1}{\sqrt{2}} \quad\left[\theta=45^{\circ}\right]
$$

(b) Draw the parallelogram defined by \mathbf{u} and \mathbf{v}.

(c) Compute the area of the parallelogram. [Hint: The formula involves $\sin \theta$. Recall the identity $\sin \theta=\sqrt{1-\cos ^{2} \theta}$.]

Solution 1:

$$
\text { area }=|\mathbf{u}||\mathbf{v}| \sin \theta=|\mathbf{u}||\mathbf{v}| \sqrt{1-\cos ^{2} \theta}=\sqrt{10} \sqrt{5} \sqrt{1-1 / 2}=5
$$

Solution 2:

$$
\text { area }=|\langle 3,1,0\rangle \times\langle 1,2,0\rangle|=|\langle 0,0,5\rangle|=5
$$

Solution 3:

$$
\text { area }=\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right|=3 \cdot 2-1 \cdot 1=5
$$

2. Consider the points $P(1,1,1), Q(1,2,3)$ and $R(2,1,2)$.
(a) Use the cross product to find a vector that is perpendicular to $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 0,1,2\rangle \times\langle 1,0,1\rangle=\langle 1,2,-1\rangle
$$

(b) Find an equation for the plane defined by P, Q, R.

$$
\begin{aligned}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right) & =0 \\
1(x-1)+2(y-1)-1(z-1) & =0 \\
x+2 y-z & =2
\end{aligned}
$$

(c) Determine whether the point $S(0,2,2)$ is on this plane.

$$
\text { Yes because }(0)+2(2)-(2)=2
$$

Problem 3. Two particles are traveling in the plane along the following curves:

$$
\mathbf{r}_{1}(t)=\left\langle t, t^{2}\right\rangle \quad \text { and } \quad \mathbf{r}_{2}(t)=\langle 4,0\rangle+t\langle-1,2\rangle .
$$

(a) I claim that the two particles will collide. Find the value of t when this happens.

$$
\mathbf{r}_{1}(t)=\langle 2,4\rangle=\mathbf{r}_{2}(t) \text { when } t=2
$$

(b) Find the velocity vectors of the two particles at the moment that they collide.

$$
\begin{aligned}
\mathbf{r}_{1}^{\prime}(t) & =\langle 1,2 t\rangle, \\
\mathbf{r}_{1}^{\prime}(2) & =\langle 1,4\rangle, \\
\mathbf{r}_{2}^{\prime}(t) & =\langle-1,2\rangle, \\
\mathbf{r}_{2}^{\prime}(2) & =\langle-1,2\rangle .
\end{aligned}
$$

(c) Find (the cosine of) the angle between these two velocities (i.e., the angle of collision).

$$
\cos \theta=\frac{\langle 1,4\rangle \times\langle-1,2\rangle}{|\langle 1,4\rangle||\langle-1,2\rangle|}=\frac{7}{\sqrt{17} \sqrt{5}} \quad\left[\theta=40.6^{\circ}\right]
$$

Problem 4. The velocity of a particle at time t is given by

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\langle 3,4 \cos t, 4 \sin t\rangle .
$$

(a) Compute the acceleration vector $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$ at time t.

$$
\mathbf{a}(t)=\langle 0,-4 \sin t, 4 \cos t\rangle
$$

(b) Supppose that the initial position is $\mathbf{r}(0)=\langle 0,0,0\rangle$. Compute the position $\mathbf{r}(t)$ of the particle at time t.

$$
\begin{gathered}
\mathbf{r}(t)=\int \mathbf{v}(t) d t=\left\langle\int 3 d t, \int 4 \cos t d t, \int 4 \sin t d t\right\rangle \\
=\left\langle 3 t+c_{1}, 4 \sin t+c_{2},-4 \cos t+c_{3}\right\rangle \\
\mathbf{r}(0)=\left\langle 3(0)+c_{1}, 4 \sin (0)+c_{2},-4 \cos (0)+c_{3}\right\rangle \\
\langle 0,0,0\rangle=\left\langle c_{1}, c_{2},-4+c_{3}\right\rangle \\
\langle 0,0,4\rangle=\left\langle c_{1}, c_{2}, c_{3}\right\rangle \\
\mathbf{r}(t)=\langle 3 t+0,4 \sin t+0,-4 \cos t+4\rangle
\end{gathered}
$$

(c) Compute the distance traveled by the particle between times $t=0$ and $t=1$.

$$
\begin{aligned}
\text { distance } & =\int_{0}^{1}|\mathbf{v}(t)| d t \\
& =\int_{0}^{1} \sqrt{3^{2}+4^{2} \cos ^{2} t+4^{2} \sin ^{2} t} d t \\
& =\int_{0}^{1} \sqrt{3^{2}+4^{2}} d t \\
& =\int_{0}^{1} \sqrt{25} d t \\
& =\int_{0}^{1} 5 d t=5 .
\end{aligned}
$$

Problem 5. Consider the two-variable function $f(x, y)=x^{2}+x y+3 y^{2}$.
(a) Compute the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$.

$$
\begin{aligned}
& f_{x}(x, y)=2 x+y, \\
& f_{y}(x, y)=x+6 y .
\end{aligned}
$$

(b) Find and equation for the tangent plane to the surface $z=f(x, y)$ when $(x, y)=(2,1)$.

$$
\begin{aligned}
(z-f(2,1)) & =(x-2) f_{x}(2,1)+(y-1) f_{y}(2,1) \\
(z-9) & =5(x-2)+8(y-1) \\
z & =9+5(x-2)+8(y-1)
\end{aligned}
$$

(c) Find the linear approximation of the function when $(x, y) \approx(2,1)$.

$$
f(x, y) \approx 9+5(x-2)+8(y-1)
$$

Problem 6. Consider a rectangular cardboard box with dimensions ℓ, w, h. If the box has no lid, then the surface area (i.e., the amount of cardboard) is given by $A=\ell w+2 \ell h+2 w h$.
(a) Compute the partial derivatives $\partial A / \partial \ell, \partial A / \partial w$ and $\partial A / \partial h$.

$$
\begin{aligned}
\partial A / \partial \ell & =w+2 h, \\
\partial A / \partial w & =\ell+2 h, \\
\partial A / \partial h & =2 \ell+2 w .
\end{aligned}
$$

(b) Suppose that the dimensions of the box are measured to be $\ell=10 \pm 0.1, w=5 \pm 0.1$ and $h=3 \pm 0.1$, in centimeters. Use differentials to estimate the uncertainty in the surface area of the box.

$$
\begin{aligned}
d A & =(\partial A / \partial \ell) d \ell+(\partial A / \partial w) d w+(\partial A / \partial h) d h \\
& =(w+2 h) d \ell+(\ell+2 h) d w+(2 \ell+2 w) d h \\
& =(5+2 \cdot 3)(0.1)+(10+2 \cdot 3)(0.1)+(2 \cdot 10+2 \cdot 5)(0.1) \\
& =(11)(0.1)+(16)(0.1)+(30)(0.1) \\
& =(57)(0.1) \\
& =5.7 \mathrm{~cm}^{2} \\
A & =140 \pm 5.7 \mathrm{~cm}^{2}
\end{aligned}
$$

