Problem 1. Matching Shapes. Let A be a 2×3 matrix and let B be a 3×2 matrix. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ and $\mathbf{z} \in \mathbb{R}^{2}$. Suppose that all of the entries of these matrices and vectors are equal to 1 . Compute the following matrices or say why they don't exist:
(a) $A B \mathbf{z}$,
(b) $A(\mathbf{x}+\mathbf{y})$,
(c) $\mathbf{z}^{T} A \mathbf{x}$,
(d) $B A+\mathbf{x y}^{T}$.

Problem 2. Special Matrices. Find specific matrices with the following properties:
(a) Find some 2×2 matrix F with $F \neq I$ and $F^{2}=I$.
(b) Find some 2×2 matrix R with $R, R^{2}, R^{3} \neq I$ and $R^{4}=I$.
(c) Find some 2×2 matrix P with $P \neq 0, I$ and $P^{2}=P$.

Problem 3. Computing the Inverse. Consider the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
1 & 2 & 4
\end{array}\right)
$$

(a) Compute the RREF of $(A \mid I)$ to obtain the inverse A^{-1}.
(b) Use your answer from (a) to solve the following linear systems:

$$
A \mathbf{x}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad A \mathbf{y}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

Problem 4. Invertibility. Prove the following statements:
(a) If A^{-1} exists then $A \mathbf{x}=A \mathbf{y}$ implies $\mathbf{x}=\mathbf{y}$.
(b) If $A \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$ then A^{-1} does not exist. [Hint: Use part (a).]
(c) If A^{-1} exists then $\left(A^{T}\right)^{-1}$ exists. [Hint: Show that $A^{T}\left(A^{-1}\right)^{T}=I$.]
(d) If A^{-1}, B^{-1} and $A B$ exist then $(A B)^{-1}$ exists. [Hint: Show that $(A B)\left(B^{-1} A^{-1}\right)=I$.]

Problem 5. A Projection Matrix. Consider the following 3×2 matrix:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
2 & 3
\end{array}\right)
$$

(a) Compute $A A^{T}$ and explain why $\left(A A^{T}\right)^{-1}$ does not exist. [Hint: Find some nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that $\left(A A^{T}\right) \mathbf{x}=\mathbf{0}$. Then use Problem 4(b).]
(b) Compute $A^{T} A$ and $\left(A^{T} A\right)^{-1}$.
(c) Compute $P=A\left(A^{T} A\right)^{-1} A^{T}$. [Remark: For any point $\mathbf{x} \in \mathbb{R}^{3}$, the point $P \mathbf{x} \in \mathbb{R}^{3}$ is the "orthogonal projection" of \mathbf{x} onto the column space of A (which is a plane).]

