Problem 1. Use Gaussian Elimination to put the following matrix in RREF:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}$$

Show your work!

Problem 2. Use your answer from Problem 1 to solve the following system of linear equations:

ſ	x	+	2y	+	3z	=	4
ł	2x	+	3y	+	4z	=	5
l	3x	+	$\begin{array}{c} 2y\\ 3y\\ 4y \end{array}$	+	5z	=	6

Problem 3. Matrices are Linear Functions. Let A be an $m \times n$ matrix with column vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n \in \mathbb{R}^m$. Then for any $n \times 1$ column vector $\mathbf{x} \in \mathbb{R}^n$ we define an $m \times 1$ column vector " $A\mathbf{x}$ " $\in \mathbb{R}^m$ by the following formula:

 $A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n$

= (1st entry $\mathbf{x})(1$ st column $A) + \dots + (n$ th entry $\mathbf{x})(n$ th column A).

Use this definition to prove that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$ we have

$$A(s\mathbf{x} + t\mathbf{y}) = s(A\mathbf{x}) + t(A\mathbf{y}).$$

Problem 4. There is no Cross Product in 4D. Find all of the vectors in \mathbb{R}^4 that are simultaneously perpendicular to (1, 1, 1, 1) and (1, 2, 3, 4). Use your answer to explain why there is no such thing as the "cross product" in \mathbb{R}^4 .

Problem 5. Orthogonal Complement. Let $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_d \in \mathbb{R}^n$ be an independent set of vectors living in *n*-dimensional space. These vectors define a *d*-dimensional subspace of \mathbb{R}^n :

 $U = \{t_1\mathbf{u}_1 + t_2\mathbf{u}_2 + \dots + t_d\mathbf{u}_d : t_1, t_2, \dots, t_d \in \mathbb{R}\} \subseteq \mathbb{R}^n.$

The *orthogonal complement of* U is defined as the set of vectors that are simultaneously perpendicular to every vector in U:

 $U^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{u}_i \bullet \mathbf{x} = 0 \text{ for all } i = 1, 2..., d \} \subseteq \mathbb{R}^n.$

Explain why U^{\perp} is an (n-d)-dimensional subspace of \mathbb{R}^n . [Hint: Consider the RREF of the system of equations $\mathbf{u}_i \bullet \mathbf{x} = 0$. How many pivot variables and free variables does it have?]