Problem 1. Parallel Lines. Consider the vector $\mathbf{a}=(1,2)$.
(a) Draw the 5 lines $\mathbf{a} \bullet \mathbf{x}=b$ for the values $b \in\{-2,-1,0,1,2\}$.
(b) Draw the 5 points $\mathbf{x}=\left(b /\|\mathbf{a}\|^{2}\right) \mathbf{a}$ for the same values $b \in\{-2,-1,0,1,2\}$.

Problem 2. Perpendicular and Parallel Lines. Consider two lines in the x, y-plane:

$$
a x+b y=c \quad \text { and } \quad a^{\prime} x+b^{\prime} y=c^{\prime} .
$$

(a) Find an equation involving the constants $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ to determine when the lines are perpendicular. [Hint: Recall that vectors $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$ are perpendicular when $\mathbf{u} \bullet \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}=0$.]
(b) Find an equation involving the constants $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ to determine when the lines are parallel. [Hint: Recall that vectors $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$ are parallel when $\mathbf{u}=t \mathbf{v}$, or $\left(u_{1}, u_{2}\right)=\left(t v_{1}, t v_{2}\right)$ for some constant t.]

Problem 3. Intersection of Two Lines. Consider the following system of two linear equations in the two unknowns x and y (where c is a constant):

$$
\left\{\begin{array}{l}
x+2 y=2 \\
x+c y=0
\end{array}\right.
$$

(a) Solve for x and y in the case $c=1$. Draw a picture of your solution.
(b) For which value of c does the system have no solution? Draw a picture in this case.

Problem 4. Intersection of Two Planes and the Cross Product. For any two vectors $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ in \mathbb{R}^{3} we define the cross product as follows:

$$
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right) .
$$

(a) Use algebra to verify the identities $\mathbf{u} \bullet(\mathbf{u} \times \mathbf{v})=0$ and $\mathbf{v} \bullet(\mathbf{u} \times \mathbf{v})=0$. It follows that the vector $\mathbf{u} \times \mathbf{v}$ is simultaneously perpendicular to \mathbf{u} and \mathbf{v}.
(b) Use the cross product to solve the following system of linear equations:

$$
\left\{\begin{array}{c}
x+y+2 z=0 \\
2 x+y+3 z=0
\end{array}\right.
$$

[Hint: The solution is a line of the form $\mathbf{x}=t \mathbf{a}$ or $(x, y, z)=(t a, t b, t c)$, where a, b, c are some constants and t is a free parameter.]

Problem 5. Intersection of Three Planes. Consider the following system of 3 linear equations in the 3 unknowns x, y, z (where c is a constant):

$$
\left\{\begin{array}{c}
x+y+2 z=0 \\
2 x+y+3 z=0 \\
2 x+3 y+c z=4
\end{array}\right.
$$

(a) Solve for x, y, z when $c=1$. In this case the three planes intersect at a unique point. [Hint: The intersection of the first two planes is a line $(x, y, z)=(t a, t b, t c)$ from Problem 2(b). Plug this into the third equation and solve for t.]
(b) For which value of c does the system have no solution? In this case the third plane is parallel to - and does not contain - the line of intersection of the first two planes. [Hint: Try to solve as in part (a). Look for a value of c that makes this impossible.]

