Problem 1. Drawing Points. Consider the vectors $\mathbf{u}=(3,1)$ and $\mathbf{v}=(1,2)$.
(a) Draw the 9 points (x, y), where $x, y \in\{0,1,2\}$.
(b) Add the point $(1.5,1.75)$ to your picture from (a).
(c) Draw the 9 points $x \mathbf{u}+y \mathbf{v}$, where $x, y \in\{0,1,2\}$.
(d) Add the point $1.5 \mathbf{u}+1.75 \mathbf{v}$ to your picture from (c).

Problem 2. Drawing Lines. Consider the same vectors $\mathbf{u}=(3,1)$ and $\mathbf{v}=(1,2)$.
(a) Add the lines $\{(x, y): x+y=1\}$ and $\{(x, y): x-2 y=-2\}$ to your picture from 1(a).
(b) I claim that each of the following set of points is a line: $\{x \mathbf{u}+y \mathbf{v}: x+y=1\}$ and $\{x \mathbf{u}+y \mathbf{v}: x-2 y=-2\}$. Add these lines to your picture from 1(c).

Problem 3. Shading Regions. Keep $\mathbf{u}=(3,1)$ and $\mathbf{v}=(1,2)$.
(a) Draw the following shaded regions:

$$
\begin{aligned}
& \{(x, y): 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1\}, \\
& \{(x, y): x \geq 1\}, \\
& \{(x, y): x \leq 1 \text { and } y \leq 1\} .
\end{aligned}
$$

(b) Draw the following shaded regions:

$$
\begin{aligned}
& \{x \mathbf{u}+y \mathbf{v}: 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1\}, \\
& \{x \mathbf{u}+y \mathbf{v}: x \geq 1\}, \\
& \{x \mathbf{u}+y \mathbf{v}: x \leq 1 \text { and } y \leq 1\} .
\end{aligned}
$$

Problem 4. The Angle Between Vectors. Let \mathbf{x}, \mathbf{y} be two vectors with the same number of components and let θ be the angle between them. The generalized Pythagorean theorem tells us that $\mathbf{x} \bullet \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$.
(a) First let $\mathbf{u}=(3,1)$ and $\mathbf{v}=(1,2)$. Use the Pythagorean theorem to compute the angle between $\mathbf{x}=2 \mathbf{u}+\mathbf{v}=(7,4)$ and $\mathbf{y}=\mathbf{u}+\mathbf{v}=(4,3)$.
(b) Now let \mathbf{u} and \mathbf{v} be any vectors in 100 -dimensional space satisfying $\mathbf{u \bullet v}=5$, $\mathbf{u} \bullet \mathbf{u}=10$ and $\mathbf{v} \bullet \mathbf{v}=5$. Use the Pythagorean theorem and the rules of vector arithmetic to compute the angle between $\mathbf{x}=2 \mathbf{u}+\mathbf{v}$ and $\mathbf{y}=\mathbf{u}+\mathbf{v}$.

Problem 5. The General Equation of a Line. If a, b, c are constant then the equation $a x+b y=c$ represents a line in the x, y-plane. This equation can also be expressed as

$$
\mathbf{a} \bullet \mathbf{x}=c,
$$

where $\mathbf{a}=(a, b)$ and $\mathbf{x}=(x, y)$.
(a) Draw the line $\mathbf{a} \bullet \mathbf{x}=-2$ when $\mathbf{a}=(1,-2)$.
(b) Show that the line $\mathbf{a} \bullet \mathbf{x}=c$ is perpendicular to the vector \mathbf{a}. [Hint: If $\mathbf{x}_{1}=\left(x_{1}, y_{1}\right)$ and $\mathbf{x}_{2}=\left(x_{2}, y_{2}\right)$ are any two points on the line, show that $\mathbf{a} \bullet\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0$.]
(c) Show that the line $\mathbf{a} \bullet \mathbf{x}=c$ contains the point $\mathbf{x}=\left(c /\|\mathbf{a}\|^{2}\right) \mathbf{a}$.

