Let A be a square matrix. Recall that an eigenvector of A is a vector $\vec{x} \neq \overrightarrow{0}$ such that $A \vec{x}=\lambda \vec{x}$ for some number λ. In this case we say that λ is the eigenvalue of \vec{x}.

Problem 1. Eigenvalues of Geometric Transformations.

(a) The rotation matrix R_{θ} rarely has any (real) eigenvalues. For which angles θ does it have real eigenvalues, and what are the eigenvalues in these cases?
(b) Let A be any matrix such that $\left(A^{T} A\right)^{-1}$ exists. Draw a picture to show that the only eigenvalues the projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ are 1 and 0 .
(c) Let P be some matrix whose eigenvalues are 1 and 0 (maybe P is a projection matrix). In this case, show that the eigenvalues of the matrix $2 P-I$ are 1 and -1 . [Hint: Suppose that $P \vec{x}=0 \vec{x}$ and $P \vec{y}=1 \vec{y}$ for some (nonzero) eigenvectors \vec{x} and \vec{y}. Then $(2 P-I) \vec{x}=$? and $(2 P-I) \vec{y}=$?.]

Problem 2. Fibonacci Numbers. Consider any 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We saw in class that the number λ is an eigenvalue of A precisely when the matrix

$$
A-\lambda I_{2}=\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)
$$

is not invertible. [Reason: Because the equation $\left(A-\lambda I_{2}\right) \vec{x}=\overrightarrow{0}$ has a non-trivial solution $\vec{x} \neq \overrightarrow{0}$ only when the matrix $\left(A-\lambda I_{2}\right)$ has some non-trivial column relation.]
(a) Write down the formula for the inverse of the 2×2 matrix $A-\lambda I_{2}$ and use it to explain why the inverse fails to exist precisely when $(a-\lambda)(d-\lambda)-b c=0$. This is called the characteristic equation of A.
(b) Now consider the "Fibonacci matrix" $T=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ from class. Solve the characteristic equation to show that the eigenvalues of T are

$$
\varphi_{1}:=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \varphi_{2}:=\frac{1-\sqrt{5}}{2} .
$$

(c) Solve the linear systems $T \vec{u}=\varphi_{1} \vec{u}$ and $T \vec{v}=\varphi_{2} \vec{v}$ to find the corresponding eigenvectors \vec{u} and \vec{v}. [Hint: It will be helpful to use the identities $\varphi_{1}^{2}=\varphi_{1}+1$ and $\varphi_{2}^{2}=\varphi_{2}+1$.]
(d) Solve the linear system

$$
\binom{1}{0}=\left(\begin{array}{ll}
\vec{u} & \vec{v}
\end{array}\right)\binom{a}{b}=a \vec{u}+b \vec{v}
$$

to express the initial condition vector $\overrightarrow{f_{0}}=\left(f_{1}, f_{0}\right)=(1,0)$ in terms of the two eigenvectors \vec{u} and \vec{v} from part (c). [In class this led us to a (surprising) formula for the n-th Fibonacci number: $\left.f_{n}=\left[(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right] /\left(2^{n} \sqrt{5}\right).\right]$
(e) Finally, draw the line $t \vec{u}$ in the plane \mathbb{R}^{2} along with the first several points $\vec{f}_{0}, \overrightarrow{f_{1}}, \overrightarrow{f_{2}}$, $\ldots, \overrightarrow{f_{5}}$. What do you see?

