Problem 1. Projection Matrices (Continued from HW5.4). Recall that we call P a projection matrix if $P^{T}=P$ and $P^{2}=P$.
(a) If A is any rectangular matrix such that $\left(A^{T} A\right)^{-1}$ exists, show that $P=A\left(A^{T} A\right)^{-1} A^{T}$ is a projection matrix. We will see in class that this is the matrix of the orthogonal projection onto the column space of A.
(b) If A is a square matrix such that A^{-1} exists, show that $P=A\left(A^{T} A\right)^{-1} A^{T}=I$. What does this mean? What space does this matrix project onto?

Problem 2. Projections in Three Dimensional Space. Consider the following vector \vec{a} in \mathbb{R}^{3} and the corresponding orthogonal plane:

$$
\vec{a}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \quad \text { and } \quad x+2 y+2 z=0
$$

(a) Use the formula from Problem 1 to find the 3×3 matrix P_{1} that projects onto the line $t \vec{a}$. [Hint: Just let $A=\vec{a}$.]
(b) Use the matrix P_{1} to project the vector $\vec{b}=(1,-1,1)$ onto the line.
(c) Find two vectors in the plane $x+2 y+2 z=0$ and then use the formula from Problem 1 to find the 3×3 matrix P_{2} that projects onto the plane. [Hint: Let A be the 3×2 matrix whose columns are the two vectors that you found.]
(d) Use the matrix P_{2} to project the vector $\vec{b}=(1,-1,1)$ onto the plane.
(e) Finally, check that $P_{1}+P_{2}=I$. Does this surprise you?

Problem 3. Minimizing the Distance from a Point to a Plane. What linear combination of $(1,2,-1)$ and $(1,0,1)$ is closest to $(3,-1,-1)$? [Hint: Problem 2(e) might suggest a shortcut.]

Problem 4. Average, Variance, Standard Deviation. These concepts from statistics are a very special case of least squares approximation.
(a) Find the equation of the horizontal line $C+0 t=b$ that is the best fit for the data

$$
\binom{t}{b}=\binom{t_{1}}{1},\binom{t_{2}}{4},\binom{t_{3}}{7},\binom{t_{4}}{2} .
$$

[Hint: I didn't tell you values $t_{1}, t_{2}, t_{3}, t_{4}$ because they don't matter. You are trying to solve the unsolvable system of equations $C=1, C=4, C=7$ and $C=2$. Write this system as $A \vec{x}=\vec{b}$ and then solve the normal equation $A^{T} A \hat{x}=A^{T} \vec{b}$ instead.]
(b) More generally, consider any $m \times 1$ vector $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$. Compute the average of the entries b_{i} by projecting the vector \vec{b} onto the line through $\vec{a}=(1,1, \ldots, 1)$. That is, solve for the average \hat{x} in the normal equation $\vec{a}^{T} \vec{a} \hat{x}=\vec{a}^{T} \vec{b}$.
(c) Continuing from part (b), compute the "error vector" $\vec{e}=\vec{b}-\vec{a} \hat{x}$. Then compute the variance $\|\vec{e}\|^{2}$ and the standard deviation $\|\vec{e}\|$.

Problem 5. Best Fit Line. Find the equation $C+t D=b$ of the best fit line for the data

$$
\binom{t}{b}=\binom{-1}{3},\binom{0}{2},\binom{1}{2},\binom{2}{1},
$$

using the following steps:
(a) Write down the matrix equation $A \vec{x}=\vec{b}$ that would be true if all four points were on the same line $C+t D=b$. This equation has no solution.
(b) Now write down the normal equation $A^{T} A \hat{x}=A^{T} \vec{b}$ and solve it to find the least squares approximation $\hat{x}=(C, D)$.
(c) Compute the error vector $\vec{e}=\vec{b}-A \hat{x}$.
(d) Finally, draw the four data points along with their best fit line. Label the vertical errors with the entries of the error vector \vec{e}.

