Problem 1. Projection Matrices (Continued from HW5.4). Recall that we call P a projection matrix if $P^T = P$ and $P^2 = P$.

- (a) If A is any **rectangular** matrix such that $(A^T A)^{-1}$ exists, show that $P = A(A^T A)^{-1}A^T$ is a projection matrix. We will see in class that this is the matrix of the orthogonal projection onto the column space of A.
- (b) If A is a square matrix such that A^{-1} exists, show that $P = A(A^T A)^{-1}A^T = I$. What does this mean? What space does this matrix project onto?

Problem 2. Projections in Three Dimensional Space. Consider the following vector \vec{a} in \mathbb{R}^3 and the corresponding orthogonal plane:

$$\vec{a} = \begin{pmatrix} 1\\2\\2 \end{pmatrix}$$
 and $x + 2y + 2z = 0$

- (a) Use the formula from Problem 1 to find the 3×3 matrix P_1 that projects onto the line $t\vec{a}$. [Hint: Just let $A = \vec{a}$.]
- (b) Use the matrix P_1 to project the vector $\vec{b} = (1, -1, 1)$ onto the line.
- (c) Find two vectors in the plane x + 2y + 2z = 0 and then use the formula from Problem 1 to find the 3×3 matrix P_2 that projects onto the plane. [Hint: Let A be the 3×2 matrix whose columns are the two vectors that you found.]
- (d) Use the matrix P_2 to project the vector $\vec{b} = (1, -1, 1)$ onto the plane.
- (e) Finally, check that $P_1 + P_2 = I$. Does this surprise you?

Problem 3. Minimizing the Distance from a Point to a Plane. What linear combination of (1, 2, -1) and (1, 0, 1) is closest to (3, -1, -1)? [Hint: Problem 2(e) might suggest a shortcut.]

Problem 4. Average, Variance, Standard Deviation. These concepts from statistics are a very special case of least squares approximation.

(a) Find the equation of the **horizontal line** C + 0t = b that is the best fit for the data

$$\begin{pmatrix} t \\ b \end{pmatrix} = \begin{pmatrix} t_1 \\ 1 \end{pmatrix}, \begin{pmatrix} t_2 \\ 4 \end{pmatrix}, \begin{pmatrix} t_3 \\ 7 \end{pmatrix}, \begin{pmatrix} t_4 \\ 2 \end{pmatrix}.$$

[Hint: I didn't tell you values t_1, t_2, t_3, t_4 because they don't matter. You are trying to solve the unsolvable system of equations C = 1, C = 4, C = 7 and C = 2. Write this system as $A\vec{x} = \vec{b}$ and then solve the normal equation $A^T A \hat{x} = A^T \vec{b}$ instead.]

- (b) More generally, consider any $m \times 1$ vector $\vec{b} = (b_1, b_2, \dots, b_m)$. Compute the average of the entries b_i by projecting the vector \vec{b} onto the line through $\vec{a} = (1, 1, \dots, 1)$. That is, solve for the average \hat{x} in the normal equation $\vec{a}^T \vec{a} \hat{x} = \vec{a}^T \vec{b}$.
- (c) Continuing from part (b), compute the "error vector" $\vec{e} = \vec{b} \vec{a}\hat{x}$. Then compute the variance $\|\vec{e}\|^2$ and the standard deviation $\|\vec{e}\|$.

Problem 5. Best Fit Line. Find the equation C + tD = b of the best fit line for the data

$$\begin{pmatrix} t \\ b \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix},$$

using the following steps:

- (a) Write down the matrix equation $A\vec{x} = \vec{b}$ that would be true if all four points were on the same line C + tD = b. This equation has no solution.
- (b) Now write down the normal equation $A^T A \hat{x} = A^T \vec{b}$ and solve it to find the least squares approximation $\hat{x} = (C, D)$.
- (c) Compute the error vector $\vec{e} = \vec{b} A\hat{x}$.
- (d) Finally, draw the four data points along with their best fit line. Label the vertical errors with the entries of the error vector \vec{e} .