Problem 1. Continued from HW3.1. Any linear system of m equations in n unknowns can be written in the form

$$
A \vec{x}=\vec{b}
$$

where A is an $m \times n$ matrix, \vec{x} is an $n \times 1$ column, and \vec{b} is an $m \times 1$ column. Use matrix algebra to give a short proof of the following statement: If a linear system has two solutions then it must have a whole line of solutions. [Hint: Let \vec{x} and \vec{y} be two solutions. Now consider the line $t \vec{x}+(1-t) \vec{y}$.]

Problem 2. Definition of Matrix Multiplication. Let A and B be matrices such that the number of columns in A equals the number of rows in B. Then the product matrix $A B$ exists and has the following properties:

$$
\begin{aligned}
(i, j)^{\text {th }} \text { entry of } A B & =\left(i^{\text {th }} \text { row of } A\right)\left(j^{\text {th }} \text { column of } B\right) \\
i^{\text {th }} \text { row of } A B & =\left(i^{\text {th }} \text { row of } A\right) B \\
j^{\text {th }} \text { column of } A B & =A\left(j^{\text {th }} \text { column of } B\right) .
\end{aligned}
$$

Now consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
2 & 0 & -1 \\
3 & 1 & 2
\end{array}\right)
$$

(a) Compute the $2^{\text {nd }}$ column of $A^{2}=A A$ without computing the full matrix A^{2}.
(b) Compute the $2^{\text {nd }}$ column of $A^{3}=A A^{2}$ without computing the full matrix A^{3}.
(c) Compute the $2^{\text {nd }}$ column of $A^{4}=A A^{3}$ without computing the full matrix A^{4}.

Problem 3. Rotation Matrices. The following matrix rotates the plane \mathbb{R}^{2} counterclockwise by angle θ :

$$
R_{\theta}:=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

(a) Find the matrices $R_{30^{\circ}}, R_{45^{\circ}}, R_{60^{\circ}}$ and $R_{90^{\circ}}$.
(b) Give a geometric explanation why for all angles α and β we have

$$
R_{\alpha} R_{\beta}=R_{\alpha+\beta}
$$

[Hint: Don't do any calculations.]
(c) Now use the result of part (b) to prove the trigonometric angle sum identities:

$$
\left\{\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta) & =\cos \alpha \sin \beta+\sin \alpha \cos \beta .
\end{aligned}\right.
$$

[Hint: Do a calculation.]
Problem 4. Projection Matrices. We say that P is a projection matrix if

- $P^{T}=P$ (i.e., P is "symmetric"), and
- $P^{2}=P$ (i.e., P is "idempotent").
(a) If P is a projection, show that $I-P$ is also a projection.
(b) Show that the projections P and $I-P$ satisfy $P(I-P)=0$.

Problem 5. How to Compute an Inverse. Let A be a matrix and suppose that we have

$$
A \vec{x}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad A \vec{x}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \text { and } \quad A \vec{x}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

(a) Explain why the matrix A has three rows.
(b) Let $X=\left(\begin{array}{lll}\vec{x}_{1} & \vec{x}_{2} & \vec{x}_{3}\end{array}\right)$ be the matrix with columns \vec{x}_{1}, \vec{x}_{2}, and \vec{x}_{3}. Compute $A X$.

Problem 6. Actually Doing It. Now consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

Solve the three linear systems from Problem 5 to find the vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ and the matrix X. Then compute the products $A X$ and $X A$ to make sure that your answer is correct.

