Problem 1. Two Pictures of the Matrix Notation. Consider the following:

$$
A=\left(\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 0 & 2 \\
0 & 1 & -1 \\
1 & -2 & 0
\end{array}\right) \quad \text { and } \quad \vec{x}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

(a) Compute $A \vec{x}$ as a linear combination of the columns of A.
(b) Compute $A \vec{x}$ by taking the dot product of \vec{x} with the rows of A.

Problem 2. Finding Implicitly Defined Matrices.

(a) Find the matrices I, P, and R such that for all x and y we have

$$
I\binom{x}{y}=\binom{x}{y}, \quad P\binom{x}{y}=\binom{y}{x}, \quad \text { and } \quad R\binom{x}{y}=\binom{-y}{x} .
$$

(b) Find the matrix A such that for all x, y, and z we have

$$
A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{2 x+y}{x+2 z}
$$

Problem 3. Discovering the Matrix Product. Consider the following:

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
1 & -1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
3 & 1 \\
1 & 0 \\
0 & -1
\end{array}\right), \quad \text { and } \quad \vec{x}=\binom{x}{y} .
$$

(a) Compute the vector $\vec{v}=B \vec{x}$.
(b) Now compute the vector $A \vec{v}=A(B \vec{x})$.
(c) Finally, find the matrix C such that for all x and y we have $C \vec{x}=A(B \vec{x})$. Can you think of a good name for this matrix?

Problem 3. Working With Abstract Matrices. Recall that a "matrix of shape $m \times n$ " has m rows and n columns. If A is $m \times n$ and B is $n \times r$ then the matrix product $A B$ is defined and has shape $m \times r$. If the number of columns of A does not equal the number of rows of B then the product $A B$ is not defined.
(a) Suppose A has shape $3 \times 5, B$ has shape 5×3, and C has shape 3×2. Which of the following matrices are defined, and what are their shapes?

$$
A B, \quad B A, \quad A B C, \quad C B A, \quad C^{T} B A .
$$

(b) Now let A and B be have arbitrary shape. Answer the following as true or false:

- If $A^{2}(=A A)$ is defined then A is square.
- If $A^{T} A$ is defined then A is square.
- If $A B=B$ then A is square.
- If $A B=B$ then B is square.
- If $A B$ and $B A$ are both defined then A and B are both square.
- If $A B$ and $B A$ are both defined then $A B$ and $B A$ are both square.

Problem 5. Matrix Multiplication is Not (Generally) Commutative.
(a) Compute the matrix product on both sides to show that

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \neq\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) .
$$

(b) Find all values of a, b, c, d such that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

