Problem 1.

(a) Draw the following three parallel lines in the Cartesian plane:

$$
x+2 y=-5, \quad x+2 y=0, \quad x+2 y=5 .
$$

(b) Fill in the blanks: The equation $a x+b y=c$, or in other words

$$
\binom{a}{b} \cdot\binom{x}{y}=c,
$$

represents a line in the Cartesian plane that is perpendicular to the vector \qquad and contains the point \qquad . [Hint: There are infinitely many correct answers. For the second blank, try to find the point of the form $(x, y)=t(a, b)$ that is on this line.]
(c) Fill in the blank: The lines $a x+b y=c$ and $a^{\prime} x+b^{\prime} y=c^{\prime}$ are perpendicular to each other if and only if \qquad .

Problem 2.

(a) Draw the circle $x^{2}+y^{2}=25$ in the Cartesian plane.
(b) Compute the intersection of this circle with the line $4 x+3 y=0$.
(c) Draw the two lines that are tangent to the circle at the points of intersection found in part (b). Find the equations of these two lines. [Hint: The tangent lines are both perpendicular to the line $4 x+3 y=0$.]

Problem 3.

(a) Solve for x and y in the following vector equation:

$$
x\binom{-1}{1}+y\binom{2}{0}=\binom{3}{2} .
$$

(b) Draw a picture of your solution using head-to-toe vector addition.
(c) Draw a picture of your solution as an intersection of two lines, one perpendicular to the vector $(-1,2)$ and one perpendicular to the vector $(1,0)$. Find the equations of these two lines.

Problem 4.

(a) Compute the intersection of the planes

$$
x+2 y-z=0 \quad \text { and } \quad x+y+2 z=0
$$

as a "parametrized line" in Cartesian space. [Hint: Let $z=t$ be a "free parameter".]
(b) Use your answer from part (a) to find some vector (x, y, z) that is simultaneously perpendicular to both $(1,2,-1)$ and $(1,1,2)$. [Hint: The answer is not unique.]
(c) Now compute the intersection of the line from part (a) with the third plane

$$
x+y+z=-1 .
$$

(d) Finally, compute the solution of the following vector equation:

$$
x\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+y\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+z\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) .
$$

