Problem 1.

(a) Draw the cube with corners at

$$\begin{pmatrix} 0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

(b) Draw the triangle in 3D with corners

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

and compute the values of its angles using the dot product.

Problem 2. Let
$$\vec{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

- (a) Draw the points \vec{u} and \vec{v} together with $\frac{1}{2}\vec{u} + \frac{1}{2}\vec{v}$, $\frac{3}{4}\vec{u} + \frac{1}{4}\vec{v}$, $\frac{1}{4}\vec{u} + \frac{1}{4}\vec{v}$ and $\vec{u} + \vec{v}$.
- (b) Draw the infinite line of points $a\vec{u} + b\vec{v}$ where a and b are any numbers (positive or negative) satisfying a+b=1. [Hint: Draw two points from the line and connect them.]
- (c) Draw the infinite line of points $a\vec{u} + a\vec{v}$ where a is any number (positive or negative). [Same hint as part (b).]
- (d) Shade the finite region of the plane containing the points $a\vec{u} + b\vec{v}$ where $0 \le a \le 1$ and $0 \le b \le 1$. What is this shape?
- (e) Shade the infinite region of the plane containing the points $a\vec{u} + b\vec{v}$ where $0 \le a$ and $0 \le b$.

Problem 3. Recall that the dot product of two *n*-dimensional vectors $\vec{u} = (u_1, u_2, \ldots, u_n)$ and $\vec{v} = (v_1, v_2, \ldots, v_n)$ is defined by

$$\vec{u} \bullet \vec{v} := u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

For any three *n*-dimensional vectors $\vec{u}, \vec{v}, \vec{w}$ and any number *a*, show that

$$\vec{u} \bullet (\vec{v} + a\vec{w}) = (\vec{u} \bullet \vec{v}) + a(\vec{u} \bullet \vec{w}).$$

This tells us that the dot product has properties similar to multiplication of numbers.

Problem 4. Let \vec{u}, \vec{v} be two *n*-dimensional vectors (I won't tell you what *n* is) and assume that they both have unit length: $\|\vec{u}\| = \|\vec{v}\| = 1$.

- (a) Compute the dot products $\vec{u} \bullet (-\vec{u})$, $(\vec{u} + \vec{v}) \bullet (\vec{u} \vec{v})$, and $(\vec{u} 2\vec{v}) \bullet (\vec{u} + 2\vec{v})$.
- (b) Now assume that we also have $\vec{u} \bullet \vec{v} = 0$ (i.e., the vectors \vec{u} and \vec{v} are perpendicular). In this case, compute the angle between the vectors $\vec{u} + 2\vec{v}$ and $3\vec{u} + \vec{v}$.