Problem 1.

(a) Draw the cube with corners at

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

(b) Draw the triangle in 3D with corners

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

and compute the values of its angles using the dot product.

Problem 2. Let $\vec{u}=\binom{1}{2}$ and $\vec{v}=\binom{3}{1}$.
(a) Draw the points \vec{u} and \vec{v} together with $\frac{1}{2} \vec{u}+\frac{1}{2} \vec{v}, \frac{3}{4} \vec{u}+\frac{1}{4} \vec{v}, \frac{1}{4} \vec{u}+\frac{1}{4} \vec{v}$ and $\vec{u}+\vec{v}$.
(b) Draw the infinite line of points $a \vec{u}+b \vec{v}$ where a and b are any numbers (positive or negative) satisfying $a+b=1$. [Hint: Draw two points from the line and connect them.]
(c) Draw the infinite line of points $a \vec{u}+a \vec{v}$ where a is any number (positive or negative). [Same hint as part (b).]
(d) Shade the finite region of the plane containing the points $a \vec{u}+b \vec{v}$ where $0 \leq a \leq 1$ and $0 \leq b \leq 1$. What is this shape?
(e) Shade the infinite region of the plane containing the points $a \vec{u}+b \vec{v}$ where $0 \leq a$ and $0 \leq b$.

Problem 3. Recall that the dot product of two n-dimensional vectors $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is defined by

$$
\vec{u} \bullet \vec{v}:=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

For any three n-dimensional vectors $\vec{u}, \vec{v}, \vec{w}$ and any number a, show that

$$
\vec{u} \bullet(\vec{v}+a \vec{w})=(\vec{u} \bullet \vec{v})+a(\vec{u} \bullet \vec{w}) .
$$

This tells us that the dot product has properties similar to multiplication of numbers.

Problem 4. Let \vec{u}, \vec{v} be two n-dimensional vectors (I won't tell you what n is) and assume that they both have unit length: $\|\vec{u}\|=\|\vec{v}\|=1$.
(a) Compute the dot products $\vec{u} \bullet(-\vec{u}),(\vec{u}+\vec{v}) \bullet(\vec{u}-\vec{v})$, and $(\vec{u}-2 \vec{v}) \bullet(\vec{u}+2 \vec{v})$.
(b) Now assume that we also have $\vec{u} \bullet \vec{v}=0$ (i.e., the vectors \vec{u} and \vec{v} are perpendicular). In this case, compute the angle between the vectors $\vec{u}+2 \vec{v}$ and $3 \vec{u}+\vec{v}$.

