Math 210 F Exam 1B
Spring 2016 Friday March 3

This is a closed book test. No electronic devices are allowed. If two students submit exams
in which any solution has been copied, both students will receive a score of zero.
There are 5 pages and 5 problems, each worth 6 points.

Problem 1. Let Z and ¢ be two vectors (in some-dimensional space) such that

I#@l =1, |#l=2  and Tejy=+3

(a) Find the cosine of the angle between Z and § (and the angle itself, if you know it).

(2l 1gh cos6 = 223
st = (R05) / (IRIIZID
.Gy = 0-1%

(b) Tell me the values of the dot products £ Z and e ¢.
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<\~ = 17 =1

%l © ™
g5 = lgh®= 2% =Y

(c) Expand the expression (§ — Z) e (§ — Z) and use the result to find the distance
between the points two points & and .
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Problem 2. Consider the following system of 3 linear equations in 3 unknowns:

z+ y+ 2z =-1
z+ 2y +3z= 0
0+ v+ z= 1

(a) Put the system in reduced row echelon form (RREF).
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(b) Use your answer from part (a) to write out the complete solution of the system.
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(c) Fill in the blanks: Geometrically, this system represents three Q\“V\Q»S that
intersect at a __ | {N.@
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Problem 3. Now consider the modified system of 3 linear equations in 3 unknowns, where
c is an arbitrary constant:

x4+ y+ 2z =-1
z+ 2y + 3z = 0
0+ y+ z= ¢

(a) Put the system in upper-staircase form (you don’t need to put it in RREF).
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(b) Use part (a) to find all values of ¢ such that the system has no solution.
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(c) If ¢ = 1 then we already saw in Problem 2 that the system has a solution. Use
your solution to express the vector (—1,0,1) as a specific linear combination of the
vectors (1,1,0), (1,2,1), and (2,3,1).

For all + we have

1 [ 2 / -
(-2-4) 43?”{%1&) (2|4t 3 | = o
: SRR 7

Now choose @»'\D t “You want .



Problem 4. Let A be a p x ¢ matrix (i.e. with p rows and ¢ columns) and let B be an
m X n matrix (i.e. with m rows and n columns).

(a) Fill in the blanks:
We think of A as a function from L -dimensional space to I -dimensional space.

We think of B as a function from Y\ -dimensional space to Mdimensional space.

A N

(b) Finish the sentence: The product matrix AB is defined only when ...

B ootumas oF A= b mwr o] B3
G

(c) Fill in the blanks: If the product matrix AB is defined then we think of it as a
function from __Y) _ -dimensional space to ?_ ~-dimensional space.

R > S R
AR

(d) Finish the sentence: If the matrix AB is defined then its entry in the 7th row and
jth column is equal to ...

(L™ 1o of A)o (&”‘ el o (3)



Problem 5. Consider the following two matrices and one vector:

13 11 0 Y
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(a) Find the vector BZ by computing the dot product of # with the rows of B.
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(b) Express the vector A(BZ) as a in%ar combination of the columns of A.

A(RR) = (‘3
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(c) Now find the matrix C such that for all numbers z,y, z we have C% = A(BZ).
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