Reading:

None

Book Problems:

None

Additional Problems:

A.1. The Gibonacci numbers are defined by $G_{0}=0, G_{1}=1$ and

$$
G_{k+2}=\frac{1}{2} G_{k+1}+\frac{1}{2} G_{k} \quad \text { for all } k \geq 0
$$

That is, each new term is the average of the previous two. Note that the first few Gibonacci numbers are

$$
0,1, \frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{11}{16}, \ldots
$$

Write the recurrence as a discrete dynamical system (i.e. a 2×2 matrix) and express the initial condition as a combination of eigenvectors. Show that G_{n} approaches $2 / 3$ as $n \rightarrow \infty$.
A.2. Owls vs Dusky-Footed Wood Rats! Consider the dynamical system

$$
\begin{aligned}
O_{k+1} & =(.5) O_{k}+(.4) R_{k}, \\
R_{k+1} & =-p O_{k}+(1.1) R_{k},
\end{aligned}
$$

where $\left(O_{k}, R_{k}\right)$ gives the populations of owls and rats in the year k. In the absence of owls, the population of rats grows 10% per year. In the absence of rats, the population of owls shrinks by 50% per year. By eating rats the owl population grows by 40% of the rat population (more rats this year means more owls next year). The positive constant p represents the amount of rats that a typical owl eats (more owls this year means less rats next year).

Draw the phase portrait for this system for three different values: $p=0.056, p=0.125$, and $p=0.2$. (You may restrict your picture to positive values of O and R.) Which value of p is best for the owls?

