Reading:

Section 4.3

Problems:

Section 4.3: 5, 7, 12, 17, 22

Additional Problems:

For these problems, use the following definition:
We say that P is a projection matrix if $P^{T}=P$ (that is, P is "symmetric") and $P^{2}=P$ (that is, P is "idempotent").
A.1. If A is a rectangular matrix such that $\left(A^{T} A\right)^{-1}$ exists, show that $P=A\left(A^{T} A\right)^{-1} A^{T}$ is a projection matrix.
A.2. If A is a square invertible matrix, show that $P=A\left(A^{T} A\right)^{-1} A^{T}=I$. What does this mean? What subspace does P project onto?
A.3. If P is a projection, show that $I-P$ is also a projection.
A.4. Show that the projections P and $I-P$ satisfy $P(I-P)=0$ (the zero matrix). We say that the projections P and $I-P$ are are orthogonal to each other, because they project onto orthogonal subspaces.

Hint for the Additional Problems: The following identities hold whenever the products and inverses under discussion exist.

$$
\begin{aligned}
(A B)^{-1} & =B^{-1} A^{-1} \\
(A B)^{T} & =B^{T} A^{T} \\
\left(A^{T}\right)^{-1} & =\left(A^{-1}\right)^{T} .
\end{aligned}
$$

