Reading:

Section 4.3

Problems:

Section 4.3: 5, 7, 12, 17, 22

Additional Problems:

For these problems, use the following definition:

We say that P is a **projection matrix** if $P^T = P$ (that is, P is "symmetric") and $P^2 = P$ (that is, P is "idempotent").

A.1. If A is a rectangular matrix such that $(A^T A)^{-1}$ exists, show that $P = A(A^T A)^{-1}A^T$ is a projection matrix.

A.2. If A is a square invertible matrix, show that $P = A(A^T A)^{-1}A^T = I$. What does this mean? What subspace does P project onto?

A.3. If P is a projection, show that I - P is also a projection.

A.4. Show that the projections P and I - P satisfy P(I - P) = 0 (the zero matrix). We say that the projections P and I - P are are **orthogonal** to each other, because they project onto orthogonal subspaces.

Hint for the Additional Problems: The following identities hold whenever the products and inverses under discussion exist.

$$\begin{aligned} (AB)^{-1} &= B^{-1}A^{-1} \\ (AB)^T &= B^TA^T \\ (A^T)^{-1} &= (A^{-1})^T. \end{aligned}$$