Reading:

Sections 2.5 and 2.7 (We will skip 2.6)

Problems:

Section 2.4: 32, 34
Section 2.5: $\quad 2,3,4,23,28,29$

Additional Problems:

A.1. The following matrix rotates the plane counterclockwise by angle θ :

$$
R_{\theta}:=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(a) Find the matrices $R_{30^{\circ}}, R_{45^{\circ}}, R_{60^{\circ}}$ and $R_{90^{\circ}}$.
(b) Give a geometric reason why for all angles α, β we have

$$
R_{\alpha} R_{\beta}=R_{\alpha+\beta}
$$

[Hint: You don't need to do any calculations.]
(c) Use part (b) to prove the trigonometric angle sum formulas:

$$
\left\{\begin{array}{l}
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta)=\cos \alpha \sin \beta+\sin \alpha \cos \beta
\end{array}\right.
$$

[This is why the angle sum formulas are true.]

