You have 20 minutes to write the quiz. No collaboration is allowed. When finished, you have 5 minutes to upload a pdf scan of your work to the google classroom.

Problem 1. [5 points] Consider the point $\mathbf{b}=(1,1,0)$ and the vector $\mathbf{a}=(1,2,1)$.
(a) Project 1 the point \mathbf{b} onto the line $t \mathbf{a}=t(1,2,1)$.
(b) Project the point \mathbf{b} onto the plane $\mathbf{a}^{T} \mathbf{x}=x+2 y+z=0$. [Hint: If P is the matrix that projects onto the line then $Q=I-P$ is the matrix that projects onto the plane.]
(a): The matrix that projects onto the line $t \mathbf{t a}$ is

$$
P=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a a}^{T}=\frac{1}{1^{2}+2^{2}+1^{2}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)=\frac{1}{6}\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right) .
$$

The projection of the point \mathbf{b} onto the line is

$$
P \mathbf{b}=\frac{1}{6}\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\frac{1}{6}\left(\begin{array}{l}
3 \\
6 \\
3
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
1 \\
1 / 2
\end{array}\right) .
$$

(a): Note that the line $t(1,2,1)$ and the plane $x+2 y+z=0$ are orthogonal complements. Thus the matrix that projects onto the plane is

$$
Q=I-P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\frac{1}{6}\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right)=\frac{1}{6}\left(\begin{array}{ccc}
5 & -2 & -1 \\
-2 & 2 & -2 \\
-1 & -2 & 5
\end{array}\right)
$$

Then the projection of the point \mathbf{b} onto the plane is

$$
Q \mathbf{b}=\frac{1}{6}\left(\begin{array}{ccc}
5 & -2 & -1 \\
-2 & 2 & -2 \\
-1 & -2 & 5
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\frac{1}{6}\left(\begin{array}{c}
3 \\
0 \\
-3
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
0 \\
-1 / 2
\end{array}\right) .
$$

Faster solution: $Q \mathbf{b}=(I-P) \mathbf{b}=\mathbf{b}-P \mathbf{b}=(1,1,0)-(1 / 2,1,1 / 2)=(1 / 2,0,-1 / 2)$.
Slower solution: Find a matrix A whose column space is the plane. Then compute the projection matrix $Q=A\left(A^{T} A\right)^{-1} A^{T}$. Then compute $Q \mathbf{b}$.

Problem 2. [5 points] Consider the following three data points:

$$
(x, y)=(0,0),(1,2),(2,1) .
$$

(a) Find \hat{m}, \hat{b} so that $y=\hat{m} x+\hat{b}$ is the best fit line for these data points. (This should minimize the sum of the squares of the vertical errors.)
(b) Draw a picture of the data points and the best fit line.

[^0](a): Each data point gives a linear equation in m and b. These three equations have no solution, so we solve the normal equation to obtain least squares approximations \hat{m} and \hat{b} :
\[

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)\binom{m}{b} & =\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)\binom{\hat{m}}{\hat{b}} & =\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right) \\
\left(\begin{array}{ll}
5 & 3 \\
3 & 3
\end{array}\right)\binom{\hat{m}}{\hat{b}} & =\binom{4}{3} \\
\binom{\hat{m}}{\hat{b}} & =\left(\begin{array}{ll}
5 & 3 \\
3 & 3
\end{array}\right)^{-1}\binom{4}{3} \\
& =\frac{1}{6}\left(\begin{array}{cc}
3 & -3 \\
-3 & 5
\end{array}\right)\binom{4}{3} \\
& =\frac{1}{6}\binom{3}{3} \\
& =\binom{1 / 2}{1 / 2} .
\end{aligned}
$$
\]

The best fit line is $y=\hat{m} x+\hat{b}=x / 2+1 / 2$.
(b): Here is a picture:

[^0]: ${ }^{1}$ Orthogonal projection, as usual.

