You have 20 minutes to write the quiz. No collaboration is allowed. When finished, you have 5 minutes to upload a pdf scan of your work to the google classroom.

Problem 1. [4 points]

Use Gaussian elimination to compute the inverse of the following matrix:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}.$$

Show your work for full credit.

We form the augmented matrix (A|I) and then use Gaussian elimination to obtain $(I|A^{-1})$:

We conclude that

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

Problem 2. [6 points]

- (a) Find some nonzero 2×2 matrix A such that A^{-1} does not exist.
- (b) Find some nonzero 2×2 matrices A and B such that AB = BA.

(c) Find a matrix A such that
$$A\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\1\\1\end{pmatrix}$$
 and $A\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\1\\2\end{pmatrix}$.

(a): Recall that the inverse of a general 2×2 matrix is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

and if ad - bc = 0 then the inverse does not exist.¹ Thus we only have to find some numbers a, b, c, d that are not all zero and satisfy ad - bc = 0. For example:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

(b): In general we could let A have entries a, b, c, d and let B have entries e, f, g, h. Then express the equation AB = BA as a system of four linear equations in the eight unknowns, which has many many solutions. But there are easier tricks. For example: Let B = I, so that

$$AI = A = IA.$$

Another Example: Let B = A, so that

and second column

so the unique answer is

$$AB = A^2 = BA.$$

(c): This time there is a unique answer. Note that the matrix A must have shape 3×2 . Furthermore it must have first column²

$$A\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\1\\1\end{pmatrix}$$
$$A\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\1\\2\end{pmatrix},$$
$$A = \begin{pmatrix}1&1\\1&1\\1&2\end{pmatrix}.$$

¹We note that ad - bc = 0 if and only if the two rows are parallel; equivalently, if and only if the two columns are parallel. [Special Case: The zero vector is parallel to every vector.] So you only need to find two parallel vectors in \mathbb{R}^2 , at least one of which is not the zero vector.

²Recall that if $f : \mathbb{R}^n \to \mathbb{R}^m$ is any linear function then the *j*th column of the $m \times n$ matrix [f] is the vector $f(\mathbf{e}_j) \in \mathbb{R}^m$, where \mathbf{e}_j is the *j*th standard basis vector of \mathbb{R}^n .