You have 20 minutes to write the quiz. No collaboration is allowed. When finished, you have 5 minutes to upload a pdf scan of your work to the google classroom.

Problem 1. [4 points]

Use Gaussian elimination to compute the inverse of the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right) .
$$

Show your work for full credit.

We form the augmented matrix $(A \mid I)$ and then use Gaussian elimination to obtain $\left(I \mid A^{-1}\right)$:

$$
\begin{aligned}
& \left(\begin{array}{lll|lll}
(1) & 0 & 0 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll|ccc}
(1) & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 1 & -3 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 \\
2 & (2)
\end{array}\right)=(3)-2(1)-3(1) \\
& \left(\begin{array}{llll}
1 & (1) & 0 \\
0 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 1 & -2 & 1
\end{array}\right)
\end{aligned}
$$

We conclude that

$$
A^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & -2 & 1
\end{array}\right) .
$$

Problem 2. [6 points]
(a) Find some nonzero 2×2 matrix A such that A^{-1} does not exist.
(b) Find some nonzero 2×2 matrices A and B such that $A B=B A$.
(c) Find a matrix A such that $A\binom{1}{0}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $A\binom{0}{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.
(a): Recall that the inverse of a general 2×2 matrix is given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

and if $a d-b c=0$ then the inverse does not exist $\mid 1$ Thus we only have to find some numbers a, b, c, d that are not all zero and satisfy $a d-b c=0$. For example:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

(b): In general we could let A have entries a, b, c, d and let B have entries e, f, g, h. Then express the equation $A B=B A$ as a system of four linear equations in the eight unknowns, which has many many solutions. But there are easier tricks. For example: Let $B=I$, so that

$$
A I=A=I A .
$$

Another Example: Let $B=A$, so that

$$
A B=A^{2}=B A
$$

(c): This time there is a unique answer. Note that the matrix A must have shape 3×2. Furthermore it must have first column ${ }^{2}$

$$
A\binom{1}{0}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

and second column

$$
A\binom{0}{1}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),
$$

so the unique answer is

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 2
\end{array}\right)
$$

[^0]
[^0]: ${ }^{1}$ We note that $a d-b c=0$ if and only if the two rows are parallel; equivalently, if and only if the two columns are parallel. [Special Case: The zero vector is parallel to every vector.] So you only need to find two parallel vectors in \mathbb{R}^{2}, at least one of which is not the zero vector.
 ${ }^{2}$ Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is any linear function then the j th column of the $m \times n$ matrix $[f]$ is the vector $f\left(\mathbf{e}_{j}\right) \in \mathbb{R}^{m}$, where \mathbf{e}_{j} is the j th standard basis vector of \mathbb{R}^{n}.

