You have 20 minutes to write the quiz. No collaboration is allowed. When finished, you have 5 minutes to upload a pdf scan of your work to the google classroom.

Problem 1. [4 points] Consider the following system of two lines in \mathbb{R}^{2} :

$$
\text { (1) } \quad\left\{\begin{aligned}
x+2 y & =1, \\
2 x+c y & =6 .
\end{aligned}\right.
$$

(a) Find the point of intersection when $c=0$.
(b) For which value of c are the two lines parallel (i.e., have no point of intersection)?
(a): If $c=0$ then equation (2) becomes $2 x=6$ and hence $x=3$. Then substituting into (1) gives $3+2 y=1$ and hence $y=-1$. We conclude that the point of intersection is $(x, y)=(3,-1)$. Picture:

(b): Recall that lines $a x+b y=c$ and $a^{\prime} x+b^{\prime} y=c^{\prime}$ are parallel if and only if $a^{\prime} b=a b^{\prime}$. If (1) and (2) are parallel then we must have $1 \cdot c=2 \cdot 2$, hence $c=4$. Picture:

Alternatively, we can try to solve the system by elimination. If (1) and (2) have a common solution then the equation $(3)=(2)-2(1)$ is also has a solution:

$$
(3):(c-4) y=4 .
$$

But this equation has no solution when $c=4$.

Problem 2. [6 points] Consider the following system of three planes in \mathbb{R}^{3} :

$$
\begin{aligned}
& \text { (1) } \\
& \text { (2) }
\end{aligned}\left\{\begin{array}{l}
x+0+2 z=1, \\
0+y-z=2, \\
x+2 y+c z=0 .
\end{array}\right.
$$

(a) Find a parametrization for the line of intersection of (1) and (2). [Hint: Let $z=t$.]
(b) Find the point of intersection of $(1),(2),(3)$ when $c=5$. [Hint: Solve for t.]
(c) For which value of c does the system have no solution?
(a): By setting $z=t$ in (1) and (2) we obtain the line of intersection:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1-2 t \\
2+t \\
t
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) .
$$

(b): To compute the point of intersection of (1),(2),(3) when $c=5$, we substitute the parametrized line from part (a) into the plane (3) to obtain

$$
\begin{aligned}
x+2 y+5 z & =0 \\
(1-2 t)+2(2+t)+5(t) & =0 \\
5+5 t & =0 \\
t & =-1 .
\end{aligned}
$$

Hence the point of intersection is $(x, y, z)=(1-2 t, 2+t, t)=(3,1,-1)$.
(c): If we try to intersect the line from (a) with the plane (3) when c is general, then we obtain

$$
\begin{aligned}
x+2 y+c z & =0 \\
(1-2 t)+2(2+t)+c(t) & =0 \\
5+c t & =0 \\
c t & =-5 .
\end{aligned}
$$

This equation has no solution when $c=0$.

