Let A be an $\ell \times m$ matrix (i.e., ℓ rows and m columns) and let B be an $m^{\prime} \times n$ matrix. If $m=m^{\prime}$ then we define the $\ell \times n$ product matrix $A B$ by requiring that

$$
(A B) \mathbf{x}=A(B \mathbf{x}) \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

If $m \neq m^{\prime}$, i.e., if $\#($ columns of $A) \neq \#$ (rows of B), then the product matrix is not defined. We can compute the matrix $A B$ with the following rules:
$(i$ th row of $A B)=(i$ th row of $A) B$,
$(j$ th col of $A B)=A(j$ th col of $B)$,
$(i, j$ entry of $A B)=(i$ th row of $A)(j$ th col of $B)$.
Note that the product of a row (on the left) times a column (on the right) is just the dot product. Furthermore, matrices of the same shape can be added componentwise and multiplied by scalars, just like vectors. Now let A, B, C be matrices and let s, t be scalars. Let O denote a zero matrix of any shape and let I denote a (square) identity matrix. Then the following rules hold (as long as the shapes match):

- $A+B=B+A$
- $A+(B+C)=(A+B)+C$
- $A+O=A$
- $s(A+B)=s A+s B$
- $(s+t) A=s A+t A$
- $s(A B)=(s A) B=A(s B)$
- $A(B C)=(A B) C$
- $A(B+C)=A B+A C$
- $(A+B) C=A C+B C$
- $A O=O$ and $O A=O$
- $A I=A$ and $I A=A$

Note that these rules include the rules of vector arithmetic as a special case because vectors are $n \times 1$ matrices and the dot product is a matrix product. Furthermore, the rules are easy to memorize because they all look obvious. The only difference is that matrix multiplication is not generally commutative:

$$
A B \neq B A
$$

Next, if A has shape $m \times n$ then we define the $n \times m$ transpose matrix A^{T} as follows:

$$
\left(i, j \text { entry of } A^{T}\right)=(j, i \text { entry of } A) .
$$

This operations satisfies the following additional rules:

- $\left(A^{T}\right)^{T}=A$
- $(s A)^{T}=s A^{T}$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(A B)^{T}=B^{T} A^{T}$

Maybe this last rule is a bit surprising? Let A be $\ell \times m$ and let B be $m \times n$, so that A^{T} is $m \times \ell$ and B^{T} is $n \times m$. Then the matrix $A^{T} B^{T}$ is not defined unless $\ell=n$. However, the matrix $B^{T} A^{T}$ is always defined and has the same shape as $(A B)^{T}$. So it makes sense. One important use of the matrix transpose is to express the dot product of vectors. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are $n \times 1$ column vectors then $\mathbf{x}^{T} \mathbf{y}$ is a 1×1 scalar, which is just the dot product:

$$
\mathbf{x}^{T} \mathbf{y}=\mathrm{x} \bullet \mathbf{y} .
$$

Furthermore, since every 1×1 matrix is equal to its own transpose we have $\mathbf{x}^{T} \mathbf{y}=\left(\mathbf{x}^{T} \mathbf{y}\right)^{T}=$ $\mathbf{y}^{T}\left(\mathbf{x}^{T}\right)^{T}=\mathbf{y}^{T} \mathbf{x}$. [Remark: On the other hand, $\mathbf{x y}^{T}$ and $\mathbf{y} \mathbf{x}^{T}$ are $n \times n$ matrices.]
Finally, we consider matrix inversion. If A and B are square matrices of the same size then we say that $A=B^{-1}$ and $B=A^{-1}$ (i.e., the matrices are inverses of each other) when

$$
A B=I=B A
$$

[Subtle Remark: In fact we only need to check one of the identities $A B=I$ and $B A=I$, since each implies the other. But this fact is quite difficult to prove.] If $A \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$ then the matrix A^{-1} does not exist. Otherwise, it does exist, and we may compute it using Gaussian elimination:

$$
(A \mid I) \stackrel{\text { RREF }}{\sim}\left(I \mid A^{-1}\right) \text {. }
$$

Now let A and B be any square matrices of the same size (not necessarily inverses of each other) and suppose that A^{-1} and B^{-1} both exist. Then the following additional rules hold:

- $\left(A^{-1}\right)^{-1}=A$
- $(s A)^{-1}=\frac{1}{s} A^{-1}$
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
- $(A B)^{-1}=B^{-1} A^{-1}$

Proof. The first rule is obvious. For the second we use the identity $(s A)(t B)=(s t)(A B)$:

$$
(s A)\left(\frac{1}{s} A^{-1}\right)=\left(s \cdot \frac{1}{s}\right)\left(A A^{-1}\right)=A A^{-1}=I .
$$

For the third rule we use the identities $I^{T}=I$ and $(A B)^{T}=B^{T} A^{T}$:

$$
\begin{aligned}
A A^{-1} & =I \\
\left(A A^{-1}\right)^{T} & =I^{T} \\
\left(A^{-1}\right)^{T} A^{T} & =I
\end{aligned}
$$

For the fourth rule we use the associativity of multiplication:

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I .
$$

These rules show us how inversion interacts with scalar multiplication, transposition and matrix multiplication. Warning: Inversion and addition do not play well together:

$$
(A+B)^{-1}=\text { nothing good. }
$$

And that's it. I encourage you to memorize these rules.

