
Math 210 Fall 2020
Homework 6 Drew Armstrong

Problem 1. An Important Formula. Let u,v 6= 0 be eigenvectors of a square matrix A:

Au = λu and Av = µv.

(a) Show that Anu = λnu for all integers n ≥ 1.
(b) Use part (a) to show that An(au + bv) = sλnu + bµnv for all scalars a, b.

(a): We will use a method called proof by induction. First note that the statement is true for
n = 1 because A1 = A and λ1 = λ by definition. Now suppose that we have Anu = λnu for
some n ≥ 1. Then it follows that

An+1u = (AAn)u

= A(Anu)

= A(λnu)

= λn(Au)

= λn(λu)

= λn+1u.

(b): This follows immediately from part (a):

An(au + bv) = a(Anu) + b(Anv) = a(λnu) + b(µnv).

Problem 2. A Projection and a Reflection. Let a,b ∈ R2 be vectors in the plane
satisfying aTb = 0, and let P be the matrix that projects onto the line ta:

P =
1

‖a‖2
aaT .

(a) Show that a and b are eigenvectors of P . What are the corresponding eigenvalues?
(b) Show that a and b are eigenvectors of F = 2P − I. What are the eigenvalues?
(c) Describe what the matrix F does geometrically.

(a): First we compute Pa, using the fact that aTa = ‖a‖2:

Pa =
1

‖a‖2
(aaT )a =

1

‖a‖2
a(aTa) =

1

���‖a‖2
a���‖a‖2 = a = 1a.

Thus a is a 1-eigenvector of P . Next we compute Pb, using the fact that aTb = 0:

Pb =
1

‖a‖2
(aaT )b =

1

‖a‖2
a(aTb) =

1

‖a‖2
a0 = 0 = 0b.

Thus b is a 0-eigenvector of P . See the course notes for discussion.

(b): From part (a) we have

Fa = (2P − I)a = 2Pa− a = 2a− a = 1a,

Fb = (2P − I)b = 2Pb− b = 20− b = −1b.

We conclude that a is a 1-eigenvector and b is a (−1)-eigenvector of F . [More generally, for
any polynomial expression f(x) we have f(P )a = f(1)a and f(P )b = f(0)b. In this example
we had f(x) = 2x− 1.]



(c): F is the (orthogonal) reflection across the line ta. See the course notes for discussion.

Problem 3. Eigenvalues of a Rotation. Consider again the rotation matrix:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

(a) Use the characteristic equation to find the complex eigenvalues of Rθ.
(b) For which values of θ are the eigenvalues real? Find the eigenvectors in each case.

(a): We will write c = cos θ and s = sin θ, so that c2 + s2 = 1. The characteristic equation is

det(Rθ − λI) = 0

det

(
c− λ −s
s c− λ

)
= 0

(c− λ)(c− λ)− (−s)s = 0

λ2 − 2cλ+ c2 + s2 = 0

λ2 − 2cλ+ 1 = 0.

Then we use the quadratic formula to obtain the eigenvalues:

λ = (2c±
√

(−2c)2 − 4)/2

= c±
√
c2 − 1

= c±
√
−s2

= c± s
√
−1

= cos θ ± i sin θ.

(b): A complex number a + ib is real if and only if b = 0. The eigenvalues λ = cos θ ± i sin θ
are real if and only if sin θ = 0, i.e., if and only if θ = 0 or θ = 180◦. In the first case we have

R0 =

(
1 0
0 1

)
= I,

so that every nonzero vector in R2 is a 1-eigenvector. In the second case we have

R180◦ =

(
−1 0
0 −1

)
= −I,

so that every nonzero vector in R2 is a (−1)-eigenvector. For any other value of θ the
rotation Rθ has no real eigenvectors. See the course notes for discussion.

Problem 4. Diagonalizing a Matrix. Consider the following 2× 2 matrix:

A =
1

6

(
5 4
2 −2

)
.

(a) Solve the characteristic equation to find the eigenvalues λ, µ.
(b) Solve the equations (A− λI)u = 0 and (A− µI)v = 0 to find eigenvectors u,v.
(c) Draw a picture of the eigenspaces in the plane.



(a): The characteristic equation is

det(A− λI) = 0

det

(
5/6− λ 4/6

2/6 −2/6− λ

)
= 0

(5/6− λ)(−2/6− λ)− (4/6)(2/6) = 0

λ2 − (3/6)λ− 10/36− 8/36 = 0

λ2 − (1/2)λ− 1/2 = 0.

Then we use the quadratic formula to obtain the eigenvalues:

λ = (1/2±
√

(−1/2)2 − 4(−1/2))/2

= (1/2±
√

9/4)/2

= (1/2± 3/2)/2

= 1 or− 1/2.

(b): The eigenspace E1 is the solution of the linear system (A− 1I)u = 0:

(A− 1I|0) =

(
5/6− 1 4/6 0

2/6 −2/6− 1 0

)
RREF−−−−→

(
1 −4 0
0 0 0

)
We conclude that E1 is the line u = t(4, 1).

The eigenspace E−1/2 is the solution of the linear system (A+ (1/2)I)u = 0:

(A+ (1/2)I|0) =

(
5/6 + 1/2 4/6 0

2/6 −2/6 + 1/2 0

)
RREF−−−−→

(
1 1/2 0
0 0 0

)
We conclude that E−1/2 is the line v = t(1,−2).

(c): Picture:

Problem 5. Two Dynamical Systems. Let A be the same matrix from Problem 4.

(a) Express the vector (2, 5) as au + bv where u,v are the eigenvectors of A.



(b) A Discrete Dynamical System. Let the points x0,x1,x2, . . . in R2 be defined by

x0 =

(
2
5

)
and xn+1 = Axn.

Use part (a) and Problem 4 to find an explicit formula for xn. [Recall that the general
solution looks like xn = aλnu + bµnv.]

(c) A Continuous Dynamical System. Let the path x(t) in R2 be defined by1

x(0) =

(
2
5

)
and x′(t) = Ax(t).

Use part (a) and Problem 4 to find an explicit formula for x(t). [Recall that the general
solution looks like x(t) = aeλtu + beµtv.]

(a): We will use u = (4, 1) and v = (1,−2), so that

a

(
4
1

)
+ b

(
1
−2

)
=

(
2
5

)
(

4 1
1 −2

)(
a
b

)
=

(
2
5

)
(
a
b

)
=

(
4 1
1 −2

)−1(
2
5

)
= −1

9

(
−2 −1
−1 4

)(
2
5

)
= −1

9

(
−9
18

)
=

(
1
−2

)
We conclude that (2, 5) = 1(4, 1) − 2(1,−2) = (4, 1) + (−2, 4) where (4, 1) is a 1-eigenvector
and (−2, 4) is a (−1/2)-eigenvector of A.

(b): The solution of x0 = (2, 5) and xn+1 = Axn is

xn = Anx0

= An
((

4
1

)
+

(
−2
4

))
= An

(
4
1

)
+An

(
−2
4

)
= 1n

(
4
1

)
+ (−1/2)n

(
−2
4

)
=

(
4− 2(−1/2)n

1 + 4(−1/2)n

)
.

Here is a picture:

1If the position x(t) has coordinates x(t) and y(t) then the velocity x′(t) has coordinates x′(t) and y′(t).



(c): The solution of x(0) = (2, 5) and x′(t) = Ax(t) is

x(t) = eAtx(0)

= eAt
((

4
1

)
+

(
−2
4

))
= eAt

(
4
1

)
+ eAt

(
−2
4

)
= e1t

(
4
1

)
+ e(−1/2)t

(
−2
4

)
=

(
4et − 2e−t/2

et + 4e−t/2

)
.

Here is a picture:


