Problem 1. An Important Formula. Let $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ be eigenvectors of a square matrix A :

$$
A \mathbf{u}=\lambda \mathbf{u} \quad \text { and } A \mathbf{v}=\mu \mathbf{v} .
$$

(a) Show that $A^{n} \mathbf{u}=\lambda^{n} \mathbf{u}$ for all integers $n \geq 1$.
(b) Use part (a) to show that $A^{n}(a \mathbf{u}+b \mathbf{v})=s \lambda^{n} \mathbf{u}+b \mu^{n} \mathbf{v}$ for all scalars a, b.
(a): We will use a method called proof by induction. First note that the statement is true for $n=1$ because $A^{1}=A$ and $\lambda^{1}=\lambda$ by definition. Now suppose that we have $A^{n} \mathbf{u}=\lambda^{n} \mathbf{u}$ for some $n \geq 1$. Then it follows that

$$
\begin{aligned}
A^{n+1} \mathbf{u} & =\left(A A^{n}\right) \mathbf{u} \\
& =A\left(A^{n} \mathbf{u}\right) \\
& =A\left(\lambda^{n} \mathbf{u}\right) \\
& =\lambda^{n}(A \mathbf{u}) \\
& =\lambda^{n}(\lambda \mathbf{u}) \\
& =\lambda^{n+1} \mathbf{u} .
\end{aligned}
$$

(b): This follows immediately from part (a):

$$
A^{n}(a \mathbf{u}+b \mathbf{v})=a\left(A^{n} \mathbf{u}\right)+b\left(A^{n} \mathbf{v}\right)=a\left(\lambda^{n} \mathbf{u}\right)+b\left(\mu^{n} \mathbf{v}\right)
$$

Problem 2. A Projection and a Reflection. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{2}$ be vectors in the plane satisfying $\mathbf{a}^{T} \mathbf{b}=0$, and let P be the matrix that projects onto the line $t \mathbf{a}$:

$$
P=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a a}^{T}
$$

(a) Show that \mathbf{a} and \mathbf{b} are eigenvectors of P. What are the corresponding eigenvalues?
(b) Show that \mathbf{a} and \mathbf{b} are eigenvectors of $F=2 P-I$. What are the eigenvalues?
(c) Describe what the matrix F does geometrically.
(a): First we compute $P \mathbf{a}$, using the fact that $\mathbf{a}^{T} \mathbf{a}=\|\mathbf{a}\|^{2}$:

$$
P \mathbf{a}=\frac{1}{\|\mathbf{a}\|^{2}}\left(\mathbf{a} \mathbf{a}^{T}\right) \mathbf{a}=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a}\left(\mathbf{a}^{T} \mathbf{a}\right)=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a}\|\mathbf{a}\|^{2}=\mathbf{a}=1 \mathbf{a} .
$$

Thus a is a 1-eigenvector of P. Next we compute $P \mathbf{b}$, using the fact that $\mathbf{a}^{T} \mathbf{b}=0$:

$$
P \mathbf{b}=\frac{1}{\|\mathbf{a}\|^{2}}\left(\mathbf{a a}^{T}\right) \mathbf{b}=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a}\left(\mathbf{a}^{T} \mathbf{b}\right)=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a} 0=\mathbf{0}=0 \mathbf{b} .
$$

Thus \mathbf{b} is a 0 -eigenvector of P. See the course notes for discussion.
(b): From part (a) we have

$$
\begin{aligned}
& F \mathbf{a}=(2 P-I) \mathbf{a}=2 P \mathbf{a}-\mathbf{a}=2 \mathbf{a}-\mathbf{a}=1 \mathbf{a} \\
& F \mathbf{b}=(2 P-I) \mathbf{b}=2 P \mathbf{b}-\mathbf{b}=2 \mathbf{0}-\mathbf{b}=-1 \mathbf{b}
\end{aligned}
$$

We conclude that \mathbf{a} is a 1 -eigenvector and \mathbf{b} is a (-1)-eigenvector of F. [More generally, for any polynomial expression $f(x)$ we have $f(P) \mathbf{a}=f(1) \mathbf{a}$ and $f(P) \mathbf{b}=f(0) \mathbf{b}$. In this example we had $f(x)=2 x-1$.]
(c): F is the (orthogonal) reflection across the line ta. See the course notes for discussion.

Problem 3. Eigenvalues of a Rotation. Consider again the rotation matrix:

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(a) Use the characteristic equation to find the complex eigenvalues of R_{θ}.
(b) For which values of θ are the eigenvalues real? Find the eigenvectors in each case.
(a): We will write $c=\cos \theta$ and $s=\sin \theta$, so that $c^{2}+s^{2}=1$. The characteristic equation is

$$
\begin{aligned}
\operatorname{det}\left(R_{\theta}-\lambda I\right) & =0 \\
\operatorname{det}\left(\begin{array}{cc}
c-\lambda & -s \\
s & c-\lambda
\end{array}\right) & =0 \\
(c-\lambda)(c-\lambda)-(-s) s & =0 \\
\lambda^{2}-2 c \lambda+c^{2}+s^{2} & =0 \\
\lambda^{2}-2 c \lambda+1 & =0
\end{aligned}
$$

Then we use the quadratic formula to obtain the eigenvalues:

$$
\begin{aligned}
\lambda & =\left(2 c \pm \sqrt{(-2 c)^{2}-4}\right) / 2 \\
& =c \pm \sqrt{c^{2}-1} \\
& =c \pm \sqrt{-s^{2}} \\
& =c \pm s \sqrt{-1} \\
& =\cos \theta \pm i \sin \theta
\end{aligned}
$$

(b): A complex number $a+i b$ is real if and only if $b=0$. The eigenvalues $\lambda=\cos \theta \pm i \sin \theta$ are real if and only if $\sin \theta=0$, i.e., if and only if $\theta=0$ or $\theta=180^{\circ}$. In the first case we have

$$
R_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

so that every nonzero vector in \mathbb{R}^{2} is a 1-eigenvector. In the second case we have

$$
R_{180^{\circ}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-I
$$

so that every nonzero vector in \mathbb{R}^{2} is a (-1)-eigenvector. For any other value of θ the rotation R_{θ} has no real eigenvectors. See the course notes for discussion.

Problem 4. Diagonalizing a Matrix. Consider the following 2×2 matrix:

$$
A=\frac{1}{6}\left(\begin{array}{cc}
5 & 4 \\
2 & -2
\end{array}\right)
$$

(a) Solve the characteristic equation to find the eigenvalues λ, μ.
(b) Solve the equations $(A-\lambda I) \mathbf{u}=\mathbf{0}$ and $(A-\mu I) \mathbf{v}=\mathbf{0}$ to find eigenvectors \mathbf{u}, \mathbf{v}.
(c) Draw a picture of the eigenspaces in the plane.
(a): The characteristic equation is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\begin{array}{cc}
5 / 6-\lambda & 4 / 6 \\
2 / 6 & -2 / 6-\lambda
\end{array}\right) & =0 \\
(5 / 6-\lambda)(-2 / 6-\lambda)-(4 / 6)(2 / 6) & =0 \\
\lambda^{2}-(3 / 6) \lambda-10 / 36-8 / 36 & =0 \\
\lambda^{2}-(1 / 2) \lambda-1 / 2 & =0 .
\end{aligned}
$$

Then we use the quadratic formula to obtain the eigenvalues:

$$
\begin{aligned}
\lambda & =\left(1 / 2 \pm \sqrt{(-1 / 2)^{2}-4(-1 / 2)}\right) / 2 \\
& =(1 / 2 \pm \sqrt{9 / 4}) / 2 \\
& =(1 / 2 \pm 3 / 2) / 2 \\
& =1 \text { or }-1 / 2 .
\end{aligned}
$$

(b): The eigenspace E_{1} is the solution of the linear system $(A-1 I) \mathbf{u}=\mathbf{0}$:

$$
(A-1 I \mid \mathbf{0})=\left(\begin{array}{cc|c}
5 / 6-1 & 4 / 6 & 0 \\
2 / 6 & -2 / 6-1 & 0
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{cc|c}
1 & -4 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We conclude that E_{1} is the line $\mathbf{u}=t(4,1)$.
The eigenspace $E_{-1 / 2}$ is the solution of the linear system $(A+(1 / 2) I) \mathbf{u}=\mathbf{0}$:

$$
(A+(1 / 2) I \mid \mathbf{0})=\left(\begin{array}{cc|c}
5 / 6+1 / 2 & 4 / 6 & 0 \\
2 / 6 & -2 / 6+1 / 2 & 0
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{cc|c}
1 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We conclude that $E_{-1 / 2}$ is the line $\mathbf{v}=t(1,-2)$.
(c): Picture:

Problem 5. Two Dynamical Systems. Let A be the same matrix from Problem 4.
(a) Express the vector $(2,5)$ as $a \mathbf{u}+b \mathbf{v}$ where \mathbf{u}, \mathbf{v} are the eigenvectors of A.
(b) A Discrete Dynamical System. Let the points $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ in \mathbb{R}^{2} be defined by

$$
\mathbf{x}_{0}=\binom{2}{5} \quad \text { and } \quad \mathbf{x}_{n+1}=A \mathbf{x}_{n}
$$

Use part (a) and Problem 4 to find an explicit formula for \mathbf{x}_{n}. [Recall that the general solution looks like $\mathbf{x}_{n}=a \lambda^{n} \mathbf{u}+b \mu^{n} \mathbf{v}$.]
(c) A Continuous Dynamical System. Let the path $\mathbf{x}(t)$ in \mathbb{R}^{2} be defined by ${ }^{1}$

$$
\mathbf{x}(0)=\binom{2}{5} \quad \text { and } \quad \mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

Use part (a) and Problem 4 to find an explicit formula for $\mathbf{x}(t)$. [Recall that the general solution looks like $\mathbf{x}(t)=a e^{\lambda t} \mathbf{u}+b e^{\mu t} \mathbf{v}$.]
(a): We will use $\mathbf{u}=(4,1)$ and $\mathbf{v}=(1,-2)$, so that

$$
\begin{aligned}
a\binom{4}{1}+b\binom{1}{-2} & =\binom{2}{5} \\
\left(\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right)\binom{a}{b} & =\binom{2}{5} \\
\binom{a}{b} & =\left(\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right)^{-1}\binom{2}{5} \\
& =-\frac{1}{9}\left(\begin{array}{cc}
-2 & -1 \\
-1 & 4
\end{array}\right)\binom{2}{5} \\
& =-\frac{1}{9}\binom{-9}{18} \\
& =\binom{1}{-2}
\end{aligned}
$$

We conclude that $(2,5)=1(4,1)-2(1,-2)=(4,1)+(-2,4)$ where $(4,1)$ is a 1 -eigenvector and $(-2,4)$ is a $(-1 / 2)$-eigenvector of A.
(b): The solution of $\mathbf{x}_{0}=(2,5)$ and $\mathbf{x}_{n+1}=A \mathbf{x}_{n}$ is

$$
\begin{aligned}
\mathbf{x}_{n} & =A^{n} \mathbf{x}_{0} \\
& =A^{n}\left(\binom{4}{1}+\binom{-2}{4}\right) \\
& =A^{n}\binom{4}{1}+A^{n}\binom{-2}{4} \\
& =1^{n}\binom{4}{1}+(-1 / 2)^{n}\binom{-2}{4} \\
& =\binom{4-2(-1 / 2)^{n}}{1+4(-1 / 2)^{n}} .
\end{aligned}
$$

Here is a picture:

[^0]
(c): The solution of $\mathbf{x}(0)=(2,5)$ and $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is
\[

$$
\begin{aligned}
\mathbf{x}(t) & =e^{A t} \mathbf{x}(0) \\
& =e^{A t}\left(\binom{4}{1}+\binom{-2}{4}\right) \\
& =e^{A t}\binom{4}{1}+e^{A t}\binom{-2}{4} \\
& =e^{1 t}\binom{4}{1}+e^{(-1 / 2) t}\binom{-2}{4} \\
& =\binom{4 e^{t}-2 e^{-t / 2}}{e^{t}+4 e^{-t / 2}} .
\end{aligned}
$$
\]

Here is a picture:

[^0]: ${ }^{1}$ If the position $\mathbf{x}(t)$ has coordinates $x(t)$ and $y(t)$ then the velocity $\mathbf{x}^{\prime}(t)$ has coordinates $x^{\prime}(t)$ and $y^{\prime}(t)$.

