Problem 1. An Important Formula. Let $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ be eigenvectors of a square matrix A :

$$
A \mathbf{u}=\lambda \mathbf{u} \quad \text { and } A \mathbf{v}=\mu \mathbf{v} .
$$

(a) Show that $A^{n} \mathbf{u}=\lambda^{n} \mathbf{u}$ for all integers $n \geq 1$.
(b) Use part (a) to show that $A^{n}(a \mathbf{u}+b \mathbf{v})=s \lambda^{n} \mathbf{u}+b \mu^{n} \mathbf{v}$ for all scalars a, b.

Problem 2. A Projection and a Reflection. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{2}$ be vectors in the plane satisfying $\mathbf{a}^{T} \mathbf{b}=0$, and let P be the matrix that projects onto the line $t \mathbf{a}$:

$$
P=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a a}^{T}
$$

(a) Show that \mathbf{a} and \mathbf{b} are eigenvectors of P. What are the corresponding eigenvalues?
(b) Show that a and \mathbf{b} are eigenvectors of $F=2 P-I$. What are the eigenvalues?
(c) Describe what the matrix F does geometrically.

Problem 3. Eigenvalues of a Rotation. Consider again the rotation matrix:

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

(a) Use the characteristic equation to find the complex eigenvalues of R_{θ}.
(b) For which values of θ are the eigenvalues real? Find the eigenvectors in each case.

Problem 4. Diagonalizing a Matrix. Consider the following 2×2 matrix:

$$
A=\frac{1}{6}\left(\begin{array}{cc}
5 & 4 \\
2 & -2
\end{array}\right) .
$$

(a) Solve the characteristic equation to find the eigenvalues λ, μ.
(b) Solve the equations $(A-\lambda I) \mathbf{u}=\mathbf{0}$ and $(A-\mu I) \mathbf{v}=\mathbf{0}$ to find eigenvectors \mathbf{u}, \mathbf{v}.
(c) Draw a picture of the eigenspaces in the plane.

Problem 5. Two Dynamical Systems. Let A be the same matrix from Problem 4.
(a) Express the vector $(2,5)$ as $a \mathbf{u}+b \mathbf{v}$ where \mathbf{u}, \mathbf{v} are the eigenvectors of A.
(b) A Discrete Dynamical System. Let the points $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ in \mathbb{R}^{2} be defined by

$$
\mathbf{x}_{0}=\binom{2}{5} \quad \text { and } \quad \mathbf{x}_{n+1}=A \mathbf{x}_{n}
$$

Use part (a) and Problem 4 to find an explicit formula for \mathbf{x}_{n}. [Recall that the general solution looks like $\mathbf{x}_{n}=a \lambda^{n} \mathbf{u}+b \mu^{n} \mathbf{v}$.]
(c) A Continuous Dynamical System. Let the path $\mathbf{x}(t)$ in \mathbb{R}^{2} be defined by ${ }^{11}$

$$
\mathbf{x}(0)=\binom{2}{5} \quad \text { and } \quad \mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

Use part (a) and Problem 4 to find an explicit formula for $\mathbf{x}(t)$. [Recall that the general solution looks like $\mathbf{x}(t)=a e^{\lambda t} \mathbf{u}+b e^{\mu t} \mathbf{v}$.]

[^0]
[^0]: ${ }^{1}$ If the position $\mathbf{x}(t)$ has coordinates $x(t)$ and $y(t)$ then the velocity $\mathbf{x}^{\prime}(t)$ has coordinates $x^{\prime}(t)$ and $y^{\prime}(t)$.

