Problem 1. An Important Formula. Let $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ be eigenvectors of a square matrix A:

$$A\mathbf{u} = \lambda \mathbf{u}$$
 and $A\mathbf{v} = \mu \mathbf{v}$.

- (a) Show that $A^n \mathbf{u} = \lambda^n \mathbf{u}$ for all integers $n \ge 1$.
- (b) Use part (a) to show that $A^n(a\mathbf{u} + b\mathbf{v}) = s\lambda^n\mathbf{u} + b\mu^n\mathbf{v}$ for all scalars a, b.

Problem 2. A Projection and a Reflection. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ be vectors in the plane satisfying $\mathbf{a}^T \mathbf{b} = 0$, and let P be the matrix that projects onto the line $t\mathbf{a}$:

$$P = \frac{1}{\|\mathbf{a}\|^2} \mathbf{a} \mathbf{a}^T.$$

- (a) Show that **a** and **b** are eigenvectors of *P*. What are the corresponding eigenvalues?
- (b) Show that **a** and **b** are eigenvectors of F = 2P I. What are the eigenvalues?
- (c) Describe what the matrix F does geometrically.

Problem 3. Eigenvalues of a Rotation. Consider again the rotation matrix:

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- (a) Use the characteristic equation to find the complex eigenvalues of R_{θ} .
- (b) For which values of θ are the eigenvalues real? Find the eigenvectors in each case.

Problem 4. Diagonalizing a Matrix. Consider the following 2×2 matrix:

$$A = \frac{1}{6} \begin{pmatrix} 5 & 4\\ 2 & -2 \end{pmatrix}.$$

- (a) Solve the characteristic equation to find the eigenvalues λ, μ .
- (b) Solve the equations $(A \lambda I)\mathbf{u} = \mathbf{0}$ and $(A \mu I)\mathbf{v} = \mathbf{0}$ to find eigenvectors \mathbf{u}, \mathbf{v} .
- (c) Draw a picture of the eigenspaces in the plane.

Problem 5. Two Dynamical Systems. Let A be the same matrix from Problem 4.

- (a) Express the vector (2,5) as $a\mathbf{u} + b\mathbf{v}$ where \mathbf{u}, \mathbf{v} are the eigenvectors of A.
- (b) A Discrete Dynamical System. Let the points $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots$ in \mathbb{R}^2 be defined by

$$\mathbf{x}_0 = \begin{pmatrix} 2\\5 \end{pmatrix}$$
 and $\mathbf{x}_{n+1} = A\mathbf{x}_n$.

Use part (a) and Problem 4 to find an explicit formula for \mathbf{x}_n . [Recall that the general solution looks like $\mathbf{x}_n = a\lambda^n \mathbf{u} + b\mu^n \mathbf{v}$.]

(c) A Continuous Dynamical System. Let the path $\mathbf{x}(t)$ in \mathbb{R}^2 be defined by¹

$$\mathbf{x}(0) = \begin{pmatrix} 2\\5 \end{pmatrix}$$
 and $\mathbf{x}'(t) = A\mathbf{x}(t).$

Use part (a) and Problem 4 to find an explicit formula for $\mathbf{x}(t)$. [Recall that the general solution looks like $\mathbf{x}(t) = ae^{\lambda t}\mathbf{u} + be^{\mu t}\mathbf{v}$.]

¹If the position $\mathbf{x}(t)$ has coordinates x(t) and y(t) then the velocity $\mathbf{x}'(t)$ has coordinates x'(t) and y'(t).