Problem 1. Special Matrices. For any angle θ we define the following matrices:

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad F_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right), \quad P_{\theta}=\left(\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right) .
$$

(a) Describe what each matrix does geometrically.
(b) Compute the determinant of each matrix.
(c) For each matrix that is invertible, compute the inverse.
(a): The matrix R_{θ} rotates counterclockwise by angle θ. The matrix F_{θ} reflects across the line with angle $\theta / 2$. [See the lecture notes for dicsussion.] The matrix P_{θ} projects onto the line with angle θ. Indeed, the matrix that projects onto the line $t \mathbf{a}=t(\cos \theta, \sin \theta)$ is

$$
P=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a a}^{T}=\frac{1}{\cos ^{2} \theta+\sin ^{2} \theta}\binom{\cos \theta}{\sin \theta}\left(\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right) .
$$

(b): To save space we will write $c=\cos \theta$ and $s=\sin \theta$. Then the determinants are

$$
\begin{aligned}
\operatorname{det}\left(R_{\theta}\right) & =c^{2}+s^{2}=1, \\
\operatorname{det}\left(F_{\theta}\right) & =-c^{2}-s^{2}=-1, \\
\operatorname{det}\left(P_{\theta}\right) & =c^{2} s^{2}-c s c s=0 .
\end{aligned}
$$

Note that these determinants do not depend on the angle θ. [Remark: It is a general phenomenon that rotations have determinant 1, reflections have determinant -1 and projections have determinant 0.]
(c): Recall that a matrix is invertible if and only if its determinant is not zero. Thus P_{θ} is not invertible. The inverses of R_{θ} and F_{θ} are given by

$$
R_{\theta}^{-1}=\frac{1}{\operatorname{det}\left(R_{\theta}\right)}\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)=\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)
$$

and

$$
F_{\theta}^{-1}=\frac{1}{\operatorname{det}\left(R_{\theta}\right)}\left(\begin{array}{cc}
-c & -s \\
-s & c
\end{array}\right)=\left(\begin{array}{cc}
c & s \\
s & -c
\end{array}\right) .
$$

[Remark: We observe that $R_{\theta}^{-1}=R_{-\theta}$ because rotating by $-\theta$ is the opposite of rotating by θ. And we observe that $F_{\theta}^{-1}=F_{\theta}$ because reflecting twice is the same as doing nothing.]

Problem 2. Projections in General $\sqrt[1]{1}$ We call P a projection if $P^{T}=P$ and $P^{2}=P$.
(a) If P is a projection, show that $Q=I-P$ is also a projection.
(b) Show that the projections P and Q from part (a) satisfy $P Q=0$.
(c) Let A be any matrix (possibly non-square), so that $A^{T} A$ is a square matrix. Assuming that $\left(A^{T} A\right)^{-1}$ exists, show that $P=A\left(A^{T} A\right)^{-1} A^{T}$ is a projection. [We saw in class that this matrix projects orthogonally onto the column space of A.]
(d) In the special case that A is invertible, show that $P=A\left(A^{T} A\right)^{-1} A^{T}=I$. What does this mean? [Hint: The column space of an invertible matrix is the whole space.]

[^0](a): Let P be a projection so that $P^{T}=P$ and $P^{2}=P$. Then we have
$$
Q^{T}=(I-P)^{T}=I^{T}-P^{T}=I-P=Q
$$
and
$$
Q^{2}=(I-P)(I-P)=I^{2}-I P-P I+P^{2}=I-P-P+P=I-P=Q,
$$
so that Q is also a projection.
(b): We have $P Q=P(I-P)=P I-P^{2}=P-P=0$. [Similarly, we have $Q P=0$.] Geometric Meaning of (a) and (b): P and Q are projections onto a pair of orthogonal subspaces. See the lecture notes for discussion.
(c): To show that $P=A\left(A^{T} A\right)^{-1} A^{T}$ is a projection we first observe that $P^{2}=P$:
\[

$$
\begin{aligned}
P^{2} & =\left[A\left(A^{T} A\right)^{-1} A^{T}\right]\left[A\left(A^{T} A\right)^{-1} A^{T}\right] \\
& =A\left(A^{T} A\right)^{-1}\left(A^{T} A\right)\left(A^{T} A\right)^{-1} A^{T} \\
& =A I\left(A^{T} A\right)^{-1} A^{T} \\
& =\left(A^{T} A\right)^{-1} A^{T} \\
& =P .
\end{aligned}
$$
\]

To show that $P^{T}=P$ we will use the matrix identities $(A B C)^{T}=C^{T} B^{T} A^{T},\left(A^{T}\right)^{T}=A$ and $\left(B^{-1}\right)^{T}=\left(B^{T}\right)^{-1}$:

$$
\begin{array}{rlr}
P^{T} & =\left[A\left(A^{T} A\right)^{-1} A^{T}\right]^{T} & \\
& =\left(A^{T}\right)^{T}\left[\left(A^{T} A\right)^{-1}\right]^{T} A^{T} & (A B C)^{T}=C^{T} B^{T} A^{T} \\
& =A\left[\left(A^{T} A\right)^{-1}\right]^{T} A^{T} & \left(A^{T}\right)^{T}=A \\
& =A\left[\left(A^{T} A\right)^{T}\right]^{-1} A^{T} & \left(B^{-1}\right)^{T}=\left(B^{T}\right)^{-1} \\
& =A\left[A^{T}\left(A^{T}\right)^{T}\right]^{-1} A^{T} & (B A)^{T}=A^{T} B^{T} \\
& =A\left[A^{T} A\right]^{-1} A^{T} & \left(A^{T}\right)^{T}=A \\
& =P . &
\end{array}
$$

(d): If A^{-1} exists then we use the identity $(B A)^{-1}=A^{-1} B^{-1}$ to observe that

$$
P=A\left(A^{T} A\right)^{-1} A^{T}=A A^{-1}\left(A^{T}\right)^{-1} A^{T}=I I=I .
$$

Geometric Meaning: The matrix P is the projection onto the column space of A. If A is invertible then the columns of A are independent, hence the column space of A is the whole space. To project a point into the whole space we do nothing because the point is already in the whole space. Geometrically we would never consider this case; we only do it to check that the algebra makes sense.

Problem 3. Specific Projections. Consider the following matrices:

$$
\mathbf{a}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), \quad A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 2
\end{array}\right) .
$$

(a) Compute the 3×3 matrix $P=\mathbf{a}\left(\mathbf{a}^{T} \mathbf{a}\right)^{-1} \mathbf{a}^{T}$ that projects onto the column space of \mathbf{a}, i.e., the matrix that projects onto the line $t(1,1,-1)$.
(b) Compute the 3×3 matrix $Q=A\left(A^{T} A\right)^{-1} A^{T}$ that projects onto the column space of A, i.e., the matrix that projects onto the plane $s(1,2,3)+t(1,1,2)$.
(c) Check that $P+Q=I$ and $P Q=0$. Why does this happen? [Hint: How are the line from part (a) and the plane from part (b) related to each other?]
(a): The matrix that projects onto the line $t \mathbf{a}=t(1,1,-1)$ is

$$
\begin{aligned}
P & =\mathbf{a}\left(\mathbf{a}^{T} \mathbf{a}\right)^{-1} \mathbf{a}^{T} \\
& =\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\left(\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\right)^{-1}\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)(3)^{-1}\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

(b): The matrix that projects onto the plane $C(A)=s(1,2,3)+t(1,1,2)$ is

$$
\begin{aligned}
Q & =A\left(A^{T} A\right)^{-1} A^{T} \\
& =\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 2
\end{array}\right)\left[\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 2
\end{array}\right)\right]^{-1}\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 2
\end{array}\right)\left(\begin{array}{cc}
14 & 9 \\
9 & 6
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 2
\end{array}\right) \frac{1}{3}\left(\begin{array}{cc}
6 & -9 \\
-9 & 14
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 2
\end{array}\right)\left(\begin{array}{ccc}
-3 & 3 & 0 \\
5 & -4 & 1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

(c): We have

$$
P+Q=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)=\frac{1}{3}\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)=I
$$

and

$$
P Q=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) \frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)=\frac{1}{9}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=0 .
$$

This happens because the line in part (a) and the plane in part (b) are orthogonal complements. [I deliberately chose them that way. First I picked the columns of A and then I let a be their cross product. Projections onto some random line and plane would not satisfy this.]

Problem 4. Least Squares Approximation. Consider the following two lines in \mathbb{R}^{3} :

$$
L_{1}:(x, y, z)=(0,0,0)+s(1,1,1), \quad L_{2}:(x, y, z)=(1,0,0)+t(-1,1,0) .
$$

(a) Write down the system of three linear equations in s, t that expresses the intersection of the two lines. [This system has no solution because the lines do not intersect.]
(b) Find the OLS approximations \hat{s} and \hat{t} for the system in part (a).
(c) Use your answer from (b) to compute the minimum distance between the two lines.
(a): A general point of L_{1} has the form $(x, y, z)=(s, s, s)$ and a general point of L_{2} has the form $(x, y, z)=(1-t, t, 0)$. If the two lines intersect them we will have $(s, s, s)=(1-t, t, 0)$, which gives a system of 3 linear equations in the 2 unknowns s, t :

$$
\left\{\begin{array} { l }
{ s = 1 - t , } \\
{ s = t , } \\
{ s = 0 . }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
s+t=1, \\
s-t=0 \\
s+0=0
\end{array}\right.\right.
$$

(b): To find approximate solutions \hat{s}, \hat{t} we consider the normal equation:

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right)\binom{s}{t} & =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right)\binom{\hat{s}}{\hat{t}} & =\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)\binom{\hat{s}}{\hat{t}} & =\binom{1}{1} \\
\binom{\hat{s}}{\hat{t}} & =\binom{1 / 3}{1 / 2}
\end{aligned}
$$

(c): The points on L_{1} and L_{2} that come closest to each other are $(\hat{s}, \hat{s}, \hat{s})=(1 / 3,1 / 3,1 / 3)$ and $(1-\hat{t}, \hat{t}, 0)=(1 / 2,1 / 2,0)$. The distance between these points is

$$
\left\|\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right)-\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right)\right\|=\sqrt{(1 / 3-1 / 2)^{3}+(1 / 3-1 / 2)^{2}+(1 / 3-0)^{2}}=\sqrt{1 / 6} .
$$

See the lecture notes for a picture.
Problem 5. Least Squares Regression. Consider four data points:

$$
(x, y)=(1,1),(2,1),(3,3),(4,5) .
$$

(a) Find the OLS best fit line $y=m x+b$ for these points. Draw your answer.
(b) Find the OLS best fit parabola $y=a x^{2}+b x+c$ for the same points. Draw your answer.
[I recommend using a computer algebra system to solve the normal equations.]
(a): Each data point gives a linear equation in m and b. This system of 4 linear equations in 2 unknowns has no solution, so we solve the normal equation:

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)\binom{m}{b} & =\left(\begin{array}{l}
1 \\
1 \\
3 \\
5
\end{array}\right) \\
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)\binom{\hat{m}}{\hat{b}} & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
3 \\
5
\end{array}\right) \\
\left(\begin{array}{cc}
30 & 10 \\
10 & 4
\end{array}\right)\binom{\hat{m}}{\hat{b}} & =\binom{32}{10} \\
\binom{\hat{m}}{\hat{b}} & =\binom{7 / 5}{-1} .
\end{aligned}
$$

The best fit line is $y=\hat{m} x+\hat{b}=(7 / 5) x-1$. Here is a picture:

(b): Each data point gives a linear equation in a, b, c. This system of 4 linear equations in 3 unknowns has no solution, so we solve the normal equation:

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1
\end{array}\right) & \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}=\left(\begin{array}{l}
1 \\
1 \\
3 \\
5
\end{array}\right) .\left(\begin{array}{llll}
1 & 4 & 9 & 16 \\
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{a} \\
\hat{b} \\
\hat{c}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 4 & 9 & 16 \\
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
3 \\
5
\end{array}\right) .
$$

The best fit parabola is $y=\hat{a} x^{2}+\hat{b} x+\hat{c}=(1 / 2) x^{2}-(11 / 10) x+(3 / 2)$. Here is a picture:

Observe that this parabola is a "better fit" than the best fit line. That is, the sum of the squares of the vertical errors is smaller. In fact, one can check that these sums are $6 / 5$ in (a) and $1 / 5$ in (b). So I guess (b) is six times "better" than (a).

[^0]: ${ }^{1}$ Technically, these matrices are called orthogonal projections because they project at right angles.

